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1. Introduction



Introduction : how to get deeper insight into macro-evolutionary processes

Phylogeny of Mammals
Bininda-Emonds et al Nature 2007

> Statistical problems in the phylogenetic
approach to diversification (see Lecture 2)

P False positive associations
(Rabosky & Goldberg Syst Biol 2015)

» Problems of identifiability
(Louca & Pennell Nature 2020)

> Phylogenies are not big data

» Need to search for additional signal from :

P Fossils

» Genomes
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Gene trees vs Species tree

SHAKING UP THE

TREE OF LIFE

> Gene trees can be inferred by comparing Species were once thought to keep to themselves. Now, hybrids
sequences are turning up everywhere, challenging evolutionary theory

P Some gene trees have the same topology (as
putative species tree?)

» Some do not

» Q. Can we exploit the signal coming from
the diversity of gene trees?

» Deep coalescences due to intrinsic
randomness of coalescent or spatial structure

= Incomplete lineage sorting

> Shallow coalescences due to gene flow
between species

Pennisi Science 2016
4
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> Trees within tree : multispecies coalescent and other nested coalescents

> A model allowing for dynamic spatial structure

> Two models allowing for gene flow between species

> Applications
P Q1. How do nested coalescents come down from infinity ?

P Q2. How to cluster a sample of genomes into putative species
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2. Nested coalescents generalizing the MSC



Coupling gene trees and species tree : The Multispecies Coalescent Paradigm
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» The Multi-Species Coalescent (MSC) : Start from the species tree = fixed or random
(e.g., birth-death process), sometimes the unknown to be inferred
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Coupling gene trees and species tree : The Multispecies Coalescent Paradigm

Gene trees Species tree

gene 1 gene/2<\

Picture by Julie Marin
» The Multi-Species Coalescent (MSC) : Start from the species tree = fixed or random
(e.g., birth-death process), sometimes the unknown to be inferred

> Conditional on the sp tree, gene trees are independent coalescents constrained to
reside within sp tree (with occasional gene flow/hybridization events)

> No explicit modeling of physical linkage/recombination
> Disagreements among gene trees mainly due to randomness of coalescent process

Example : if sp tree given by Kingman’s coalescent, the pair gene tree/species tree is
called the nested Kingman coalescent, or simply ‘Kingman in Kingman'...
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0 time
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> ...corresponding to Kingman coalescent when A = 4.



Nested coalescents

> A nested coalescent describes the coagulation dynamics of genes contained in species

> Sample DNA at the same locus in each individual labelled 1, . . ., n and define [19(t) and
e (t) by

iandj are in same block of 19(t) <= the gene lineages of i and j have coalesced before t

iandjare in same block of IN°(t) <= the species lineages of i and j have coalesced before t

> Inthe absence of gene flow, gene lineages can coalesce only if € the same species
= M9(t) is finer than IM°(t).

> A nested coalescent is said simple if both M9 and IM* see only one merger at a time - but
possibly the same time.



Simple nested coalescents

Blancas, Duchamps, Lambert & Siri-Jégousse, “Trees within trees : Simple nested coalescents”, EJP (2018)

Theorem (Blancas, Duchamps, Lambert & Siri-Jégousse (2018))

Asimple nested coalescent can be characterized by the following three types of mechanisms :

> There is a measure Ns on [0, 1] such that species undergo A-coalescent-type events
according to As, during which genes do nothing.
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For simple nested fragmentations, see :
Duchamps, JJ “Trees within trees Il : Nested fragmentations”, Ann Inst H Poincaré Probab Stat (2020).
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> In reality, speciation takes time, is a by-product of genetic
differentiation (see Lecture 2)

> Gene flow and/or spatial structure may be important causes
of gene tree disagreement
> We need models of gene trees/species tree acknowledging
P Speciation takes place in a spatially dynamic context (Model 1)

> Or species do exchange genes continuously (Models 2 and 3)

» Three Models

J0000PaCPO T

)paiinaanaannann
10000000000000o

50

(
i
E
()
(
(
(

pecios A

@

(@
a4
0O



What about several gene trees?

> In the MSC, speciation events are instantaneous and gene
trees are shaped by the species tree...

> In reality, speciation takes time, is a by-product of genetic
differentiation (see Lecture 2)

> Gene flow and/or spatial structure may be important causes
of gene tree disagreement
> We need models of gene trees/species tree acknowledging
P Speciation takes place in a spatially dynamic context (Model 1)
> Or species do exchange genes continuously (Models 2 and 3)
> Three Models

P Model 1. One locus, n individuals sampled
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What about several gene trees?

> In the MSC, speciation events are instantaneous and gene
trees are shaped by the species tree...

> In reality, speciation takes time, is a by-product of genetic
differentiation (see Lecture 2)

> Gene flow and/or spatial structure may be important causes
of gene tree disagreement
> We need models of gene trees/species tree acknowledging
P Speciation takes place in a spatially dynamic context (Model 1)
> Or species do exchange genes continuously (Models 2 and 3)
> Three Models

P Model 1. One locus, n individuals sampled

P Model 2. Several loci, one genome sampled.
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What about several gene trees?

> In the MSC, speciation events are instantaneous and gene
trees are shaped by the species tree...

> In reality, speciation takes time, is a by-product of genetic
differentiation (see Lecture 2)

> Gene flow and/or spatial structure may be important causes
of gene tree disagreement
> We need models of gene trees/species tree acknowledging
P Speciation takes place in a spatially dynamic context (Model 1)
> Or species do exchange genes continuously (Models 2 and 3)
> Three Models

P Model 1. One locus, n individuals sampled
P Model 2. Several loci, one genome sampled.

P> Model 3. Several loci, n genomes sampled.
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Outline

3. Model 1. Dynamic spatial structure



A dynamic model of peripatric metapopulation

» Context of peripatric speciation : one main
population surrounded by small, peripheral
isolates with marginal environmental
conditions (possibly causing speciation)
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A dynamic model of peripatric metapopulation

> Context of peripatric speciation : one main
population surrounded by small, peripheral
isolates with marginal environmental
conditions (possibly causing speciation)

» Assumptions:

P One main population of size N

P Surrounded by &y (stochastic) small colonies
of size eyN

P Births/deaths within populations occurring at
rate 1

> Small colonies emerge from colonization
events (fission) and disappear by merging with
main pop (fusion)...

epsN=5

®



Metapopulation dynamics : Fusions and fissions

> Fusion : each colony independently merges

> Fission : each individual independently seeds with main population...

anew colony...
> .atrateqy = v (enén)*"'/N
> ..atrate 0y = 0/syN? if from main pop

> « > 1:density-dependence
> ..atrate By = (3/syN? if from a colony

> Total fusion rate (loss of colonies) :
> Total fission rate (gain of colonies) :
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Metapopulation dynamics : Fusions and fissions

» Fission : each individual independently seeds
anew colony...

> ..atrate 0y = 0/syN? if from main pop
> ..atrate By = (3/syN? if from a colony
> Total fission rate (gain of colonies) :

0 B 0 + B(enén)
= N+ ——(enNéy) = ———=
E:'NN2 * ENN2 (EN EN) 6/\//\/

> Fusion : each colony independently merges
with main population...

> .atrateqy = v (enén)*"'/N
> « > 1:density-dependence

> Total fusion rate (loss of colonies) :

_ (enén)®
ENN



Large populations

Lambert & Ma, “The coalescent in peripatric metapopulations”, J Appl Prob (2015)

Proposition (Lambert & Ma (2015))
AsN — oo, ey — 0and eyN — oo,
6N'&‘N(t‘) — X(t)7

where
Ast — oo,

X =0+ Bx —yx~,
x(t) — k= (e, 8,7,0), where

> Total number of colonies at eq = enyéy =~ k/eny K KN

> Total number of individuals in colonies at eq = eyNéy ~ kN

> Fraction of biomass in main popeq = N/(N + (enN)&n) = 1/(1 + )

1 0+ Bk
Total fission rate (gain of colonies) ~ — x + Pk
N EN
. . 1 YR
Total fusion rate (loss of colonies) ~ — x
N EN

(equal at equilibrium)

0+ pr —yr™ = 0.



Genealogy of a sample in a dynamic metapopulation

eps N

Fusion

Fission

eps N
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The in/out coalescent
Lambert & Ma, “The coalescent in peripatric metapopulations”, J Appl Prob (2015)

Theorem (Lambert & Ma (2015))

AsN — oo, ey — 0 and eyN — oo, the genealogy of a sample at
equilibrium only depends on which lineages are

» ‘inner’=in main pop, or
» ‘outer’=in some colony

In backward time accelerated by a factor N,
» Each pair of inner lineages coalesces at rate 1

» Each inner lineage turns outer at rate

o enN
Rate [In —s Out]~ " x N e /

» Each outer lineage turns inner at rate ( (

Inner lineages Outer lineages

6
Rate [Out — In] =~ — X =
en  K/en
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Conclusion on Model 1

> A spatially dynamic model, where small
populations bud from and merge with main

population O

©®,

> Asimple two-state coalescent

> Perspective : embed in a speciation
framework where each species consists in one
main pop surrounded by colonies and new
species/main pop’s spontaneously emerge

P The active/inactive coalescent also arises in
models of seed banks.

See for example Blath, Gonzalez Casanova, Kurt & Wilke-Berenguer, “A new coalescent for
seedbank models” Ann Appl Prob (2016)

... who show for example that for a sample of n, Tygrca < InIn(n)...

= The active/inactive coalescent doesn’t come down from infinity but ALMOST :)



Outline

4. Two models allowing for gene flow
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Models with gene flow

>

The MSC yields a nice way of coupling gene trees thanks to the species tree.

In models with gene flow, 3 several species which are ancestral = carry a subset of
ancestral gene lineages

No mother-daughter species relationship = no species tree

As in ARG, if one sampled genome with n genes, we can define M,(t) the partition of
{1,...,n}induced by:

iandj € same block of I,(t) <= Lineages ancestral to genesiand; at t bkwd lie in same sp

By sampling consistency, 3 N (t) exchangeable partition of N such that
Mn(t) £ Moo (t) restricted to {1,...,n}

By the Kingman-De Finetti Theorem, an exchangeable partition of N can be obtained by
‘painting’ each integer in color j > 1with proba 3; (‘frequency of block j°), or in a distinct
colorwith probad = 1— 37, j; (singletons, or ‘dust’).

Beta_1 Beta_2 Beta_3 d
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Model 2. Speciation with introgression

(A) Forward time model with N species

» N monomorphic species, each harboring one
genome of n genes indexed by {1,...,n}

(B) Backward time : ancestry of 1 sampled genome

past

present

T T
{1 3} {2} {1, 2 3}

T >

{1 2} {3} {1 2 3}
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(A) Forward time model with N species (B) Backward time : ancestry of 1 sampled genome
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» Extinction-recolonization as in Moran model, ying P
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Model 2. Speciation with introgression

(A) Forward time model with N species (B) Backward time : ancestry of 1 sampled genome

» N monomorphic species, each harboring one > AsN — oo : Markov process I1,(t) valued in
genome of n genes indexed by {1,..., n} partitions of {1, ..., n} induced by the

» Extinction-recolonization as in Moran model, relation ‘lying in the same species
pairwise rate 1, genome replicated faithfully > Coalescent : Each pair of blocks coalesces at
upon colonization rate 1

> Introgression : each gene lineage, at rate ¢ > Erosion : Each lineage leaves its block at rate ¢
can replicate and move from one species to and forms a new singleton.
another and then replace its homologous
copy in the target species. = [Mp(t) = Kingman coalescent with erosion
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T T T >
{1 3} {2} {1, 2 3} {1 2} {3} {1, 2 3} 22



The Kingman coalescent with erosion

Foutel-Rodier, Lambert & Schertzer, “Kingman’s coalescent with erosion”, EJP (2020)

> Nb of blocks #[1,(t) = nb of ancestral species to the

sampled genome t time unitsage [T 7 3
[ —’—‘ —_—
(o

2
—
o) 4
s 0

The origin of a block can be traced back to its singleton:
Reversing time, the size of a block is the total progeny of
critical birth-death process
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The Kingman coalescent with erosion

Foutel-Rodier, Lambert & Schertzer, “Kingman’s coalescent with erosion”, EJP (2020)

> Nb of blocks #[1,(t) = nb of ancestral species to the
sampled genome t time unitsage [T 7 3
G —_—
> #[,(t) goes fromk — k — 1atrate k(k — 1)/2 and —’—‘
from k — k + 1at rate cn (modulo singletons) @ | ?
C, 4
> Ast — oo, #Ms(t) = v2cn - o
> Reversing time, when k particles are present, each The origin of a block can be traced back to its singleton:

particle gives birth at rate cn/k ~ +/cn/2 and dies at Reversing time, the size of a block is the total progeny of
rate (k —1)/2 ~ \/C”7 critical birth-death process

Theorem (Foutel-Rodier, Lambert & Schertzer (2020))
Set My (k) := nb of blocks of size k in M (t) as t — oo and My, := #Mp(c0) = >, Ma(k).
Thenasn — oo, My /+/n — +/2cand
. Mn(k)
|
n—lrgo \/2cn

where Jis the total progeny of a critical birth-death process. Also M (t) has no dust (d = 0)
and ast — oo, its block frequencies (3;) can be explicitly characterized.

=P =k),

See also Berestycki, J (2004).
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Model 3. Gene-based diversification and the notion of co-adaptation

» In forward time, gene lineages accumulate > In backward time, a gene lineage is ancestral
mutations giving rise to new alleles to one or several genomes of the sample

> Anew allele is only co-adapted with alleles > Two non-homologous gene lineages are
present at other loci of the same genome at co-adapted iff they are both ancestral to one
that time common genome

> Separately evolving populations progressively > In backward time, co-adaptation increases as
lose co-adaptation of their genomes. coalescences occur.

mleple
5

D

000000000
OOuuugu
0000AdO00
000000000

Coadaptation in forward time : Coadaptation in backward time :
New alleles are co-adapted with genomic background Lineages ancestral to the same genome are co-adapted

24



Model 3. Gene-based diversification (Forward)

Marin, Achaz, Crombach & Lambert “The genomic view of diversification”, J Evol Biol 2020

GBD-forward model

> Genomes accumulate mutations at rate « per lineage Parameters ||

B i
and genetic drift Bl o ®
(rates B and y) o || 3
e

3 i
i i

H

genetic differentiation
(rate @)

I
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gene flow
(rate &)
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Model 3. Gene-based diversification (Forward)

Marin, Achaz, Crombach & Lambert “The genomic view of diversification”, J Evol Biol 2020

GBD-forward model

> Genomes accumulate mutations at rate o per lineage Parameters ||

and genetic drift

> Populations/genomes replicate (rate 3) (s pandy)
> Each pop is subject to genetic drift (rate -y, not shown)

> Populations exchange genes at rate  per lineage thinned
by the degree of coadaptation of introgressed gene with
target genome

genetic differentiation __|

(rate )

> 4 parameters
> Asin MSC: neutral, no explicit modeling of physical linkage

> Explicit modeling of the progressive loss of co-adaptation
= A model coupling gene trees (together and) with
progressive emergence of reproductive isolation

gene flow
(rate 5)

» BUT prohibitively slow for simulation or inference.
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Model 3. Gene-based diversification (Backward)

Marin, Achaz, Crombach & Lambert “The genomic view of diversification”, J Evol Biol (2020)

» Rate a: Non-homologous attraction between GBD-backward model
co-adapted gene lineages Gene genalogies Gene trees
Parameters |
..Tunes the timescale of gene flow ]I
Large a => Most gene lineages concentrated in "‘{ 1l
one or two species homcagous stracion 1]

=F

(rates band )

non-homologous attraction
(rate a) -

erosion
(rate )
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Marin, Achaz, Crombach & Lambert “The genomic view of diversification”, J Evol Biol (2020)

» Rate a: Non-homologous attraction between
co-adapted gene lineages

..Tunes the timescale of gene flow

Large a => Most gene lineages concentrated in
one or two species

> Rate b: Homologous attraction
..Tunes the speed of reproductive isolation

Large b = Short wait between ‘speciations’

GBD-backward model
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Model 3. Gene-based diversification (Backward)

Marin, Achaz, Crombach & Lambert “The genomic view of diversification”, J Evol Biol (2020)

» Rate a: Non-homologous attraction between
co-adapted gene lineages

..Tunes the timescale of gene flow

Large a => Most gene lineages concentrated in
one or two species

> Rate b: Homologous attraction
..Tunes the speed of reproductive isolation

Large b = Short wait between ‘speciations’

> Rate c: Coalescence
..Tunes the degree of polymorphism

Large c = No incomplete lineage sorting

> Rate d: Erosion
..Tunes the number of pops exchanging genes

Large d = Many ancestral species
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Properties of the GBD backward model

Marin, Achaz, Crombach & Lambert “The genomic view of diversification”, J Evol Biol (2020)

» Coalescent-based, fast to simulate
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Sampling-consistent
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Bear and Finch datasets

Kutschera et al 14, Kumar et al 17, Farrington et al 14

Bear data-set: S5 | Polarbear

14 autosomal introns

6 species asrown bear

American
black bear

. b
a st bone

Spectacled
bear

.
[ | T |

Ty Towy oMy

Kutschera et al MBE 14

Bears = 6 species, 14 loci

0.42] G- scandens
0.24/l G. magnirostris

0.151L G. conirostris
0391l G, fuliginosa
'—G. fortis

G. septentrionalis

o3 Cam. psittacula

. {Camparvulus
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_[Cac. pallida
L Cac. heliobates

P. crassirostris

P.inornata

098] Ce. fusca
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Ce. olivacea

T. bicolor

Farrington et al Evolution 14

Finches = 6 species, 7 loci



ABC on Bear and Finch datasets

Marin, Achaz, Crombach & Lambert “The genomic view of diversification”, J Evol Biol (2020)

Bear data-set
Multi-species coalescent (MSC) model

Finch data-set

Multi-species coalescent (MSC) model

065

Gene-based diversification (GBD) model
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Marin, Achaz, Crombach & Lambert “The genomic view of diversification”, J Evol Biol (2020)

Bear data-set
Multi-species coalescent (MSC) model Gene-based diversification (GBD) model
0.30-, KL divergence = 0.39 0.30-, KL divergence = 0.24
A=0.08, y=0.016 dfa=2.1,b=0.03
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Finch data-set
Multi-species coalescent (MSC) model Gene-based diversification (GBD) model
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5. Applications



How does Kingman’s coalescent CDI?

CDI = come down from infinity

> The process K; counting the number
of blocks in Kingman'’s coalescent is a
. , : pure-death process going from k to
Kingman’s coalescent : k —1atrate ()
: 2
comes down from oo (CDI) :

» Under P, K behaves like the

2
solution to x = — % starting at oo,
equal to
2
x(t) = -
(=1
i.e.

Poo (tK — 2) = 1.
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Kingman in Kingman

time
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How do nested coalescents come down from infinity ? (CDI)

> Here, pairs of species coalesce at rate 1
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P Pairs of genes coalesce at rate ¢

P And mutiple mergers according to a A-coalescent (CDI)

> Set ,
N v = X +/ (€ — 14 Ar) r2A(dr)
2 1

» Then the A-coalescent CDI iff

[Grey’s condition] /-oo o <
%)
x Y(X)

and then it behaves at time 07 like x = —1)(x) starting at co.
Schweinsberg (2000), Berestycki, Berestycki & Limic (2010)
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and then it behaves at time 07 like x = —1)(x) starting at co.
Schweinsberg (2000), Berestycki, Berestycki & Limic (2010)

Do nested coalescents CDI? Yes : Domination by coal’s started at co.

How do nested coalescents CDI?

1.

Simple coalescents : speed is determined by a simple ODE with oco-initial condition.

2. Nested coalescents : speed is determined by a degenerate PDE.
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The coagulation-transport PDE

» The transport equation with velocity —
Ord(t,x) = Ox(vd)(t,x) t,x>0

describes the evolution of the concentration d(t, x) of particles with mass x at time t,
where particles spontaneously lose mass as in the ODE x = —1)(x).
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> The coagulation-transport equation with velocity —i and coagulation rate a
Od(t,x) = Ox(¢d)(t,x) + a(t)(d*d(t,x) — d(t,x)) t,x>0

describes the evolution of the concentration d(t, x) of particles which lose mass as in
the ODE X = —(x) and gain mass by pairwise coagulation at rate a.

Note:d x d(t,x) = [y d(t,x — y)d(t,y) dy denotes the convolution product.
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oo species with at least one gene (each)
Lambert & Schertzer, “Coagulation-transport equations and the nested coalescents”, Probability Theory & Related Fields 2020
> Let S(t) := # species, [/(t) := # genes or mass of the i-th species

s(t)

Gn(t) == S(t Zamt
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oo species with at least one gene (each)
Lambert & Schertzer, “Coagulation-transport equations and the nested coalescents”, Probability Theory & Related Fields 2020

> Let S(t) := # species, [/(t) := # genes or mass of the i-th species

. s
Gn(t) = % Zéﬂi(t)/n‘

i=1

> Start with co many species, each one containing at least one gene.
_ 1
> Thenn~'S(t/n) — 2a(t), wherea(t) = ;

Theorem (Lambert & Schertzer (2020))

Under these conditions, (Gn(t/n); t > 0) converges to the unique solution of the
coagulation-transport equation

Ord(t,x) = Ok(¢d)(t,x) + a(t) (d xd(t,x) — d(t,x)) t>0,x>0
such that lim supy fy°° d(t, x) dx > 0 (for some y) =: proper solution.

» Solution starts at § and ends at Jg.
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> Let S(t) := # species, [/(t) := # genes or mass of the i-th species
)
Gnlt) := g5 2 i

i=1

> Start with co many species, each one containing at least one gene.
_ 1
> Thenn~'S(t/n) — 2a(t), wherea(t) = 1

Theorem (Lambert & Schertzer (2020))

Under these conditions, (Gn(t/n); t > 0) converges to the unique solution of the
coagulation-transport equation

Ord(t,x) = Ok(¥d)(t,x) + a(t) (dxd(t,x) — d(t,x)) t>0,x>0
such that lim supy fy°° d(t, x) dx > 0 (for some y) =: proper solution.

» Solution starts at oo and ends at do.

> Uniqueness of solution holds under the sole condition that
lim sup; o fyoo d(t,x) dx > 0 for somey : starting at co many species does not require
tuning initial number of genes : species coalescences dominate gene coalescences so as
to generate initial condition.



CDI of the nested Kingman coalescent

see also Blancas, Rogers, Schweinsberg & Siri-Jégousse (2018)

> Fori(x) = cx7 (y > 1)and a(t) = 1/t,if T is the rv with density d(1, -), then d(t, -) is
the density of

1
t T
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> Fori(x) = cx7 (y > 1)and a(t) = 1/t,if T is the rv with density d(1, -), then d(t, -) is
the density of

1
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> Recall
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> Let p(t) = total # genes, so that for any n
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SMILE : An interdisciplinary group in Paris
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Comparing qualitative behavior of GBD Forward/GBD Backward

Marin, Achaz, Crombach & Lambert “The genomic view of diversification”, J Evol Biol (2020)

2 species sampled at present time GBD Forward

1 genome with 20 homologous genes per species A) Coalescence profile

GBD Backward

D) Coalescence profile

*
* 2 E]
— —
* GBD-forward:a =2,d =6 g, 5, 4
H g
* GBD backward:a = 0.1,0 = 0.06 i, i
— As time goes backward, we count... £, £,
A) # Pairs of homologous gene lineages having coalesced: ¢ 57— 3 R
J Yo e o8
tme ne
B) Ancestral species number E) Ancestral species number
B) # Species ancestral to either present-day species : : ]
present {ime past present {ime past
C) Ancestral species partition F) Ancestral species partition

(@)

) # Gene lineages in main ancestral species :

gene lineages partition with species

gene lineages partition with species

02
present



ABC on distribution of pairwise distances between gene trees

Marin, Achaz, Crombach & Lambert “The genomic view of diversification”, J Evol Biol (2020)

> Simulate or infer gene trees

Mosaic of gene trees

» Compute (BHV or KC) distance between each
pair of gene trees
(Billera-Holmes-Vogtmann 05, Kendall-Colijn 16)

» Compare distribution of pairwise distances via
Kullback-Leibler divergence to simulations w

parameters (a, b, d) A/> /OX /}\

ABCOEF ABCODEF ABCDEF ABCDEF

» Minimize KL divergence in parameter space

e

ABCDEF ABCDEF ABCDEF ABCDEF

» Recall parameters:
a tunes timescale of gene flow,
b tunes timescale of reproductive isolation,
d tunes # ancestral species.



ABC on distribution of pairwise distances between gene trees

Marin, Achaz, Crombach & Lambert “The genomic view of diversification”, J Evol Biol (2020)
> Simulate or infer gene trees

A) Inferences on d/a
BHV distances KC distances

» Compute (BHV or KC) distance between each
pair of gene trees
(Billera-Holmes-Vogtmann 05, Kendall-Colijn 16)

inferred values

> Compare distribution of pairwise distancesvia 1|

Kullback-Leibler divergence to simulations w T T
simulated values simulated values

parameters (G, b7 d) B) Inferences on b
BHV distances KC distances

» Minimize KL divergence in parameter space

inferred values

inferred values

» Recall parameters:

a tunes timescale of gene flow,
b tunes timescale of reproductive isolation,
d tunes # ancestral species.

simulated values simulated values
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O(n) species with O(n) genes (each)

Lambert & Schertzer, “Coagulation-transport equations and the nested coalescents”, Probability Theory & Related Fields (2020)

> Let Sy(t) := # species, i, (t) := # genes or mass of the i-th species,

1 Sn(t)
Gp(t) := —— 0 i .
n(t) ) ; i (6)/n
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O(n) species with O(n) genes (each)

Lambert & Schertzer, “Coagulation-transport equations and the nested coalescents”, Probability Theory & Related Fields (2020)

> Let Sy(t) := # species, i, (t) := # genes or mass of the i-th species,

s
Gp(t) i = —— 5 i .
’7( ) Sn(t) lzz; n(t)/n

> Start with r n species containing genes in iid numbers w law v,
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O(n) species with O(n) genes (each)

Lambert & Schertzer, “Coagulation-transport equations and the nested coalescents”, Probability Theory & Related Fields (2020)

> Let Sy(t) := # species, i, (t) := # genes or mass of the i-th species,

1 Sn(t)
Gp(t) := —— 1) i .
n(t) ) ; ni(6)/n

> Start with r n species containing genes in iid numbers w law v,

> Thenn='S,(t/n) — 2a(t), where a(t) = 5 with§ = 2
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O(n) species with O(n) genes (each)

Lambert & Schertzer, “Coagulation-transport equations and the nested coalescents”, Probability Theory & Related Fields (2020)

> Let Sy(t) := # species, i, (t) := # genes or mass of the i-th species,
1 20O
Gp(t) i = —— 5 i .
n(t) ) ; ni(6)/n

> Start with r n species containing genes in iid numbers w law v".

> Thenn='S,(t/n) — 2a(t), where a(t) = 5 with§ = 2

Theorem (Lambert & Schertzer 2020)

IfGn(0) = v, then (Gx(t/n); t > 0) converges to the unique solution of the
coagulation-transport equation

(%) Bd(t,x) = u(wd)(t,x) + a(t) (dxd(t,x) — d(t,x)) tx>0

with initial condition d(0, x) dx = v(dx).
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weak solutions

Callf : [0, 00) — R atest-function if f is C', and f and +/f’ are bounded.
For d solution of

(%) Oed(t,x) = O(d)(t,x) + a(t) (dxd(t,x) — d(t,x)) t,x>0

Set pe(dx) = d(t,x) dxand pe(f) = [pr F(x) pe(dx).
Assuming that d is a probability density and integrating by parts, we get

Ot (pe(F)) = —pe(wf’) + a(t) (e * pe(F) — pue(F)).
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weak solutions

Callf : [0, 00) — R atest-function if f is C', and f and +/f’ are bounded.
For d solution of

(%) Oed(t,x) = O(d)(t,x) + a(t) (dxd(t,x) — d(t,x)) t,x>0

Set pe(dx) = d(t,x) dxand pe(f) = [pr F(x) pe(dx).
Assuming that d is a probability density and integrating by parts, we get

Ot (pe(F)) = —pe(wf’) + a(t) (e * pe(F) — pue(F)).

Definition

A probability-valued process (y¢; t > 0) is a weak solution of (x) with initial condition v if for
every test-function f and everyt > 0:

pe(F) = () — /Otus(wf/)ds+ /Ot a(s) (s # ps(F) — ps(F))ds £ > 0.
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Mc-Kean-Vlasov solutions

Definition

A probability-valued process (yu; t > 0) is a McKean-Vlasov (MK-V) solution of (x) with
initial condition v if there exists a process (x¢; t > 0) such that e = L(x¢) and

dxe = —(x)dt + vi A,  L{xo) =v

where J is an inhomogeneous Poisson process with rate a(t) at time t, and (v¢; t > 0) isa
sequence of independent rvs with L(v¢) = L(x¢).
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Mc-Kean-Vlasov solutions

Definition

A probability-valued process (yu; t > 0) is a McKean-Vlasov (MK-V) solution of (x) with
initial condition v if there exists a process (x¢; t > 0) such that e = L(x¢) and

dxy = —w(Xt) dt + vt AJg, ﬁ(Xo) =v
where J is an inhomogeneous Poisson process with rate a(t) at time t, and (v¢; t > 0) isa
sequence of independent rvs with L(v¢) = L(x¢).
Proposition

If (ue; t > 0) is a MK-V solution of (x) with initial condition v, then it is a weak solution of (%)
with initial condition v.

Proof : For every test-function f, take cond expectation of following eq (It0) :

df(X[) = 7fl(Xt_ )’l/)(Xt_) dt =+ (f(Xt_ + Vt) — f(Xt_)) AJt.

Existence of a MK-V solution =~ —  Existence of a weak solution,
Uniqueness of the weak solution = Uniqueness of the MK-V solution.
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construction of a MK-V solution

» Remark 1. Zooming on (or conditional sampling) the Kingman coalescent gives the
Brownian coalescent point process (CPP) :

Lambert & Schertzer, “Recovering the Brownian coalescent point process from the Kingman coalescent by

conditional sampling”, Bernoulli (2019).

> Remark 2. The Brownian CPP has node depths given by a PPP with intensity d¢ t—2dt
= leftmost lineage branches atrate t =2/ [°° s™2ds = 1/t

> Recall that e = L(x¢) is a MK-V solution of (x) with initial cond v if
dXt = 71/)(Xt) dt =+ vt AJt, E(Xo) =V

where Jjumps atrate 1/(t + &) and L(v¢) = L(x¢).
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Brownian Coalescent Point Process

Node depths form a Poisson point process with intensity d¢ t—2dt

(0,0,0 (0,0,1)

(0,1,1)

©.0)]

© 7T




construction of a MK-V solution of (%)

> Assume 1(0) = 0 and ¢ nondecreasing.

> Lett be aplane, binary tree embedded in time, leaves at time 0.
> Mark leaf i with a positive real number IW;

> Let each mark decrease with time as x = —1)(x)

> When two branches coalesce, add the two marks

> LetX:(t, (W;)) := value of mark on leftmost branch at depth t.
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construction of a MK-V solution of (%)

> Assume 1(0) = 0 and ¢ nondecreasing.

> Lett be aplane, binary tree embedded in time, leaves at time 0.
> Mark leaf i with a positive real number IW;

> Let each mark decrease with time as x = —1)(x)

> When two branches coalesce, add the two marks

> LetX:(t, (W;)) := value of mark on leftmost branch at depth t.

Theorem

Ifthe (W;) are iid ~ v and t is a CPP with intensity d¢ (t + §)~2dt, then (X¢(t, (W;)); t > 0)is
a MK-V solution to ().
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construction of a MK-V solution of (%)

> Assume 1(0) = 0 and ¢ nondecreasing.

> Lett be aplane, binary tree embedded in time, leaves at time 0.
> Mark leaf i with a positive real number IW;

> Let each mark decrease with time as x = —1)(x)

> When two branches coalesce, add the two marks

> LetX:(t, (W;)) := value of mark on leftmost branch at depth t.

Theorem

Ifthe (W;) are iid ~ v and t is a CPP with intensity d¢ (t + §)~2dt, then (X¢(t, (W;)); t > 0)is
a MK-V solution to ().

In particular, ,uﬁ's) = L(X¢(t, (W;)) is a weak solution to ().



Laplace transform of the weak solution

> Let (ue; t > 0) be aweak solution to () and set

u(t, \) ;:/ e~ M pue(dx).
[0,00)

> Whenever v is of type (A), including 1 (x) = cx for~y € (1, 2], uis solution to
(L) du = Au+ a(t)(v? — u),

where A is the infinitesimal generator of a Markov process Z.

> The process (Z;; t > 0) is a critical, continuous-state branching process or CSBP with
branching mechanism .

> Under Grey’s condition, Z is a.s. absorbed at 0 in finite time.



uniqueness of weak solution to (x) and (*x)

> Let ¢ is a pure-birth tree with birth rate d(t) = a(T — t) starting at time 0 and stopped
attime T.

> Let Q] be the law of a branching particle system
P starting with one particle with mass x at time 0
> each particle follows an edge of t and splits into two copies of itself at the next branching time
P particle masses evolve like independent copies of Z between nodes of t

> (Zé; 1 < i < N¢) denote the particle masses at time t
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uniqueness of weak solution to (x) and (*x)

> Let ¢ is a pure-birth tree with birth rate d(t) = a(T — t) starting at time 0 and stopped
attime T.

> Let Q] be the law of a branching particle system

P starting with one particle with mass x at time 0
> each particle follows an edge of t and splits into two copies of itself at the next branching time
P particle masses evolve like independent copies of Z between nodes of t

> (Zé; 1 < i < N¢) denote the particle masses at time t

Theorem

Case (*) : The only solution to (L) with u(0, \) = f[0 ) e~ ™u(dx) is given by

Nt )
u(T, ) =0} He*WfZ/T
i=1

where the (W;) are iid with law v.
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uniqueness of weak solution to (x) and (*x)

> Let ¢ is a pure-birth tree with birth rate d(t) = a(T — t) starting at time 0 and stopped
attime T.

> Let Q] be the law of a branching particle system

P starting with one particle with mass x at time 0
> each particle follows an edge of t and splits into two copies of itself at the next branching time
P particle masses evolve like independent copies of Z between nodes of t

> (Zé; 1 < i < N¢) denote the particle masses at time t

Theorem

Case (*) : The only solution to (L) with u(0, \) = f[0 ) e~ ™u(dx) is given by

Nt .
u(T, ) =0} He*WfZ/T
i=1
where the (W;) are iid with law v.
Case (x*) : If now [ a(t) dt = oo, under Grey’s condition, any proper sol to (L) equals
u(T,A) = Q) (A),

where .# := {all masses become extinct before time T}.
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uniqueness of weak solution to (x) and (x*) : disintegration formula

> Using the branching property of Z, we can invert the Laplace transform

u(T, ) =0Qf [exp | — Z W,z

i=1
> Inthe case (x), 7 is the law (wrt pure-birth tree t and the WW;’s) of

Nt
F(t, W;) = M® <1 — exp (Z W,-Z’T)) ,
i=1

where M? is the 0-entrance law of the branching CSBP.

> In the case (%), o7 is the law (wrt pure-birth tree t) of
F(t) = M* (4°),

where . := {all masses become extinct before time T}.
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conclusion

> We exposed a relation between the empirical measure of the nested coalescent at small
times and a coagulation-transport equation.

> We constructed a finite pop (6 > 0) McKean-Vlasov solution using the Brownian
coalescent point process.

> Using a disintegration formula, we proved that there is at most one co-pop (§ = 0)
proper solution under Grey’s condition, given by the law of

F(t) = M® (z°).
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open problems

> Convergence of nested A coalescents (not only nested Kingman).
> Uniqueness of the entrance law at co.
> What if ¢ is not the Laplace exponent of a Lévy process? e.g., 1 (x) = x7 withy > 27

> Characterization of and convergence to dust solutions.
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