Recap

Last time we looked at

- Regression adjustment
- MCMC-ABC
- SMC-ABC

Today we will look at an example of ABC-Gibbs, and model choice.

The first topic is motivated by a recent article of Clarté et al. (2019) Component-wise Approximate Bayesian Computation via Gibbs-like steps. \textit{arXiv:1905.13599v1}
Estimating the divergence time of primates
Model choice

- Model choice is a difficult issue for ABC
Model choice is a difficult issue for ABC

Obvious scientific drawback for hypothesis testing
Introduction

- Model choice is a difficult issue for ABC
- Obvious scientific drawback for hypothesis testing

ABC model choice is a conceptual problem: wrong vector of summary statistics may produce inconsistent inference

Two issues:
- not easy to select good summary statistics
Model choice is a difficult issue for ABC

Obvious scientific drawback for hypothesis testing

ABC model choice is a conceptual problem: wrong vector of summary statistics may produce inconsistent inference

Two issues:

- not easy to select good summary statistics
- even getting a set which give convergent Bayes factors may give poor approximation at practical level
First example adds the model index as an extra parameter, $m \in \mathcal{M}$.

- For $i = 1, \ldots, n$ do
 - Generate m from $\pi(\mathcal{M})$
Standard ABC model choice, given $\mathcal{D}, S(\mathcal{D})$

First example adds the model index as an extra parameter, $m \in \mathcal{M}$.

- For $i = 1, \ldots, n$ do
 - Generate m from $\pi(\mathcal{M})$
 - Generate θ from prior $\pi_m(\theta)$
First example adds the model index as an extra parameter, $m \in \mathcal{M}$.

- For $i = 1, \ldots, n$ do
 - Generate m from $\pi(M)$
 - Generate θ from prior $\pi_m(\theta)$
 - Generate \mathcal{D}' from model $f_m(D|\theta)$
Standard ABC model choice, given $\mathcal{D}, S(\mathcal{D})$

First example adds the model index as an extra parameter, $m \in \mathcal{M}$.

- For $i = 1, \ldots, n$ do
 - Generate m from $\pi(\mathcal{M})$
 - Generate θ from prior $\pi_m(\theta)$
 - Generate \mathcal{D}' from model $f_m(\mathcal{D}|\theta)$
 - Set $m_i = m, \theta_i = \theta, s'_i = S(\mathcal{D}')$
Standard ABC model choice, given $\mathcal{D}, S(\mathcal{D})$

First example adds the model index as an extra parameter, $m \in \mathcal{M}$.

- For $i = 1, \ldots, n$ do
 - Generate m from $\pi(\mathcal{M})$
 - Generate θ from prior $\pi_m(\theta)$
 - Generate \mathcal{D}' from model $f_m(\mathcal{D}|\theta)$
 - Set $m_i = m, \theta_i = \theta, s'_i = S(\mathcal{D}')$

- Return the values m_i with k smallest distances $\rho(s'_i, s)$
First example adds the model index as an extra parameter, \(m \in \mathcal{M} \).

- For \(i = 1, \ldots, n \) do
 - Generate \(m \) from \(\pi(\mathcal{M}) \)
 - Generate \(\theta \) from prior \(\pi_m(\theta) \)
 - Generate \(\mathcal{D}' \) from model \(f_m(\mathcal{D}|\theta) \)
 - Set \(m_i = m, \theta_i = \theta, s'_i = S(\mathcal{D}') \)
- Return the values \(m_i \) with \(k \) smallest distances \(\rho(s'_i, s) \)

The chosen model indices are a sample from \(\pi(m|S) \)
Local logistic regression model choice

Note that

\[\mathbb{P}(M = m | S = s) = \mathbb{E}(1_{M=m} | S = s) \]

so we can treat the analysis as a regression problem: iid draws from law of \((m, s)\), the response being indicator of whether simulation comes from model \(m\), covariates being the summary statistics. For example,

- Generate \(N\) samples \((m_i, s_i)\)
Local logistic regression model choice

Note that

$$P(M = m | S = s) = E(1_{M=m} | S = s)$$

so we can treat the analysis as a regression problem: iid draws from law of \((m, s)\), the response being indicator of whether simulation comes from model \(m\), covariates being the summary statistics. For example,

- Generate \(N\) samples \((m_i, s_i)\)
- Compute weights \(w_i = K_h(s_i - s_0)\) where \(K\) is a kernel density and \(h\) the bandwidth estimated from the \(s_i\)
Local logistic regression model choice

Note that

\[\mathbb{P}(M = m | S = s) = \mathbb{E}(1_{M=m} | S = s) \]

so we can treat the analysis as a regression problem: iid draws from law of \((m, s)\), the response being indicator of whether simulation comes from model \(m\), covariates being the summary statistics. For example,

- Generate \(N\) samples \((m_i, s_i)\)
- Compute weights \(w_i = K_h(s_i - s_0)\) where \(K\) is a kernel density and \(h\) the bandwidth estimated from the \(s_i\)
- Estimate probabilities \(\mathbb{P}(M = m | s_0)\) using logistic link (e.g. in \textit{vgam} in R) from the weighted data \((m_i, s_i, w_i)\)
Local logistic regression model choice

Note that

\[\mathbb{P}(M = m | S = s) = \mathbb{E}(1_{M=m} | S = s) \]

so we can treat the analysis as a regression problem: iid draws from law of \((m, s)\), the response being indicator of whether simulation comes from model \(m\), covariates being the summary statistics. For example,

- Generate \(N\) samples \((m_i, s_i)\)
- Compute weights \(w_i = K_h(s_i - s_0)\) where \(K\) is a kernel density and \(h\) the bandwidth estimated from the \(s_i\)
- Estimate probabilities \(\mathbb{P}(M = m | s_0)\) using logistic link (e.g. in \(\text{vgam}\) in R) from the weighted data \((m_i, s_i, w_i)\)

Warning: \(\mathbb{P}(M = m | S = s_0)\) is a surrogate for \(\mathbb{P}(M = m | D)\) \ldots
Bayes factors

ABC posterior probability estimators are (i) *imprecise* and (ii) *inconsistent*, so may not converge to a point mass on the true model.
Bayes factors

ABC posterior probability estimators are (i) *imprecise* and (ii) *inconsistent*, so may not converge to a point mass on the true model.

We want to estimate posterior ratios of the model probabilities, for example

$$\frac{\mathbb{P}(M_1 | D)}{\mathbb{P}(M_2 | D)}$$

Note that

$$\frac{\mathbb{P}(M_1 | D)}{\mathbb{P}(M_2 | D)} = \frac{\mathbb{P}(D | M_1)}{\mathbb{P}(D | M_2)} \frac{\pi(M_1)}{\pi(M_2)}$$

(5)

The term

$$B_{12} := \frac{\mathbb{P}(D | M_1)}{\mathbb{P}(D | M_2)}$$

is known as the *Bayes factor*.
Bayes factors

ABC posterior probability estimators are (i) *imprecise* and (ii) *inconsistent*, so may not converge to a point mass on the true model.

We want to estimate posterior ratios of the model probabilities, for example

\[
\frac{\mathbb{P}(\mathcal{M}_1|\mathcal{D})}{\mathbb{P}(\mathcal{M}_2|\mathcal{D})}
\]

Note that

\[
\frac{\mathbb{P}(\mathcal{M}_1|\mathcal{D})}{\mathbb{P}(\mathcal{M}_2|\mathcal{D})} = \frac{\mathbb{P}(\mathcal{D}|\mathcal{M}_1)}{\mathbb{P}(\mathcal{D}|\mathcal{M}_2)} \frac{\pi(\mathcal{M}_1)}{\pi(\mathcal{M}_2)}
\]

(5)

The term

\[
B_{12} := \frac{\mathbb{P}(\mathcal{D}|\mathcal{M}_1)}{\mathbb{P}(\mathcal{D}|\mathcal{M}_2)}
\]

is known as the *Bayes factor*.
• If we can estimate this ratio, then we can compute the posterior ratio on left of (5)
If we can estimate this ratio, then we can compute the posterior ratio on left of (5).

We can approximate B_{12} using the relative acceptance rate of the rejection method.

But what happens with summary statistics? It turns out that things can get complicated, because

$$ B_{12} = \frac{\mathbb{P}(D|M_1)}{\mathbb{P}(D|M_2)} $$
● If we can estimate this ratio, then we can compute the posterior ratio on left of (5)
● We can approximate B_{12} using the relative acceptance rate of the rejection method

But what happens with summary statistics? It turns out that things can get complicated, because

$$B_{12} = \frac{\mathbb{P}(\mathcal{D}|\mathcal{M}_1)}{\mathbb{P}(\mathcal{D}|\mathcal{M}_2)} = \frac{\mathbb{P}(\mathcal{D}|S(\mathcal{D}), \mathcal{M}_1) \mathbb{P}(S(\mathcal{D})|\mathcal{M}_1)}{\mathbb{P}(\mathcal{D}|S(\mathcal{D}), \mathcal{M}_2) \mathbb{P}(S(\mathcal{D})|\mathcal{M}_2)}$$
• If we can estimate this ratio, then we can compute the posterior ratio on left of (5)

• We can approximate B_{12} using the relative acceptance rate of the rejection method

But what happens with summary statistics? It turns out that things can get complicated, because

\[
B_{12} = \frac{\mathbb{P}(D|M_1)}{\mathbb{P}(D|M_2)} = \frac{\mathbb{P}(D|S(D), M_1)\mathbb{P}(S(D)|M_1)}{\mathbb{P}(D|S(D), M_2)\mathbb{P}(S(D)|M_2)} = \frac{\mathbb{P}(D|S(D), M_1)}{\mathbb{P}(D|S(D), M_2)} B_{12}^S
\]
Thus a summary statistic is sufficient for comparing \mathcal{M}_1 and \mathcal{M}_2 if, and only if,

\[P(D|S(D), \mathcal{M}_1) = P(D|S(D), \mathcal{M}_2) \]

Note that

- Sufficiency for \mathcal{M}_1 or \mathcal{M}_2 alone, or for both models, does not guarantee sufficiency for ranking the models
Thus a summary statistic is sufficient for comparing \mathcal{M}_1 and \mathcal{M}_2 if, and only if,

$$\mathbb{P}(\mathcal{D}|S(\mathcal{D}), \mathcal{M}_1) = \mathbb{P}(\mathcal{D}|S(\mathcal{D}), \mathcal{M}_2)$$

Note that

- Sufficiency for \mathcal{M}_1 or \mathcal{M}_2 alone, or for both models, does not guarantee sufficiency for ranking the models
- If the summary statistic is sufficient for a model \mathcal{M} in which both \mathcal{M}_1 and \mathcal{M}_2 are both nested, then models can be ranked
Thus a summary statistic is sufficient for comparing \mathcal{M}_1 and \mathcal{M}_2 if, and only if,

$$\mathbb{P}(D|S(D), \mathcal{M}_1) = \mathbb{P}(D|S(D), \mathcal{M}_2)$$

Note that

- Sufficiency for \mathcal{M}_1 or \mathcal{M}_2 alone, or for both models, does not guarantee sufficiency for ranking the models
- If the summary statistic is sufficient for a model \mathcal{M} in which both \mathcal{M}_1 and \mathcal{M}_2 are both nested, then models can be ranked
- What are we to do?
Thus a summary statistic is sufficient for comparing \mathcal{M}_1 and \mathcal{M}_2 if, and only if,

$$\mathbb{P}(D|S(D), \mathcal{M}_1) = \mathbb{P}(D|S(D), \mathcal{M}_2)$$

Note that

- Sufficiency for \mathcal{M}_1 or \mathcal{M}_2 alone, or for both models, does not guarantee sufficiency for ranking the models
- If the summary statistic is sufficient for a model \mathcal{M} in which both \mathcal{M}_1 and \mathcal{M}_2 are both nested, then models can be ranked
- What are we to do?
- Choose maximum a posteriori model via machine learning (e.g. random forests)
Thus a summary statistic is sufficient for comparing \mathcal{M}_1 and \mathcal{M}_2 if, and only if,

$$\mathbb{P}(\mathcal{D}|S(\mathcal{D}), \mathcal{M}_1) = \mathbb{P}(\mathcal{D}|S(\mathcal{D}), \mathcal{M}_2)$$

Note that

- Sufficiency for \mathcal{M}_1 or \mathcal{M}_2 alone, or for both models, does not guarantee sufficiency for ranking the models
- If the summary statistic is sufficient for a model \mathcal{M} in which both \mathcal{M}_1 and \mathcal{M}_2 are both nested, then models can be ranked
- What are we to do?
- Choose maximum a posteriori model via machine learning (e.g. random forests)

See Didelot et al (Bayesian Analysis, 2011), Robert et al (PNAS, 2011) and the Marin chapter (2018) for further details