Recap

- Last time, we described some of the mathematical underpinnings from population genetics, showed how they had influenced the field, and what they had led to.
- The Ewens Sampling Formula paper (1972) started the field of inference in population genetics, and has many other uses in combinatorics and Bayesian non-parametric analysis.
- We described an example from the world of computational cancer genomics, in which ABC could be used to attack what is in essence a combinatorics problem.
- We alluded to the need for faster coalescent simulation approaches.

Regression-based methods

Motivation – 1

The idea is to replace the hard cut-off in the ABC with a soft version that makes use of all of the observations.

In the summary statistic approach care has to be taken to choose $\rho(S, S')$.

For example, if $S = (S_1, \ldots, S_m)$ is an m-dimensional summary, and

$$\rho(S, S') = ||S' - S|| = \sqrt{\sum_{i=1}^{m} (S'_i - S_i)^2}$$

then accepting whenever $\rho \leq \epsilon$ treats the values of S' equally, regardless of the value of ρ.

- smooth weighting
- regression adjustment

The method is insensitive to the value of ϵ, and allows m to be large.
Motivation – 2

We start from M observations (θ_i, S_i), where each θ_i is an independent draw from the prior $\pi(\cdot)$ and S_i is the set of summary statistics generated when $\theta = \theta_i$.

We standardize the coordinates of S_i to have equal variances.

Now the posterior is

$$f(\theta|S) = \frac{f(\theta, S)}{f(S)}$$

so to estimate the left-hand side we could estimate the joint density and the marginal likelihood, and evaluate at $S = s_0$, the data.

Motivation – 3

The (θ_i, S_i) are a sample from the joint law, and the rejection method is just one way to estimate the conditional law when $S = s_0$; those with small values of $||S_i - s_0||$ are the ones to use.

This can be improved by

- weighting the θ_i according to $\rho(S_i, s_0)$
- adjusting the θ_i by local-linear regression

Imagine that we have

$$\theta_i = m(s_i) + \epsilon := \alpha + (s_i - s_0)^T \beta + \epsilon_i, i = 1, 2, \ldots, M$$

(3)

where the ϵ_i are uncorrelated $(0, \sigma^2)$ rvs
Motivation – 4

When \(s_i = s_0 \), \(\theta_i \) is drawn from a distribution with mean

\[
\mathbb{E}(\theta|S = s_0) = \alpha
\]

The least-squares estimator of \((\alpha, \beta)\) minimizes

\[
\sum_{i=1}^{M} (\theta_i - \alpha - (s_i - s_0)^T \beta)^2
\]

so that

\[
(\hat{\alpha}, \hat{\beta}) = (X^T X)^{-1} X^T \theta,
\]

where \(X \) is the design matrix.

Motivation – 5

\[
X = \begin{pmatrix}
1 & s_{11} - s_{01} & \cdots & s_{1m} - s_{0m} \\
\vdots & \vdots & & \vdots \\
1 & s_{M1} - s_{01} & \cdots & s_{Mm} - s_{0m}
\end{pmatrix}
\]

Then, from (3)

\[
\theta_i^* = \theta_i - (s_i - s_0)^T \hat{\beta}
\]

form an approximate random sample from \(f(\theta|s_0) \)

Note that \(\mathbb{E}(\theta|s_0) = \hat{\alpha} = M^{-1} \sum \theta_i^* \)
Regression method – 1

We can improve things by using weighted regression. Replace the minimization objective with

$$\sum_{i=1}^{M}(\theta_i - \alpha - (s_i - s_0)^T \beta)^2 K_\epsilon(||s_i - s_0||)$$ (4)

One choice is the Epanechnikov kernel

$$K_\epsilon(t) = \frac{3}{2\epsilon} \left(1 - \left(\frac{t}{\epsilon} \right)^2 \right) \mathbb{I}(t \leq \epsilon);$$

$$\int_0^\epsilon K_\epsilon(t) dt = 1.$$ Now we get

$$(\hat{\alpha}, \hat{\beta}) = (X^TWX)^{-1}X^TW\theta,$$

Regression method – 2

where $W = \text{diag}\{K_\epsilon(||s_i - s_0||)\}$

We now have

$$\mathbb{E}(\theta | s_0) = \hat{\alpha} = \frac{\sum \theta_i^* K_\epsilon(||s_i - s_0||)}{\sum K_\epsilon(||s_i - s_0||)}$$

Our weighted sample from the posterior is given by (θ_i^*, w_i), with

$$w_i = \frac{K_\epsilon(||s_i - s_0||)}{\sum K_\epsilon(||s_i - s_0||)}, i = 1, \ldots, M$$

This discussion concerns linear adjustment. Can generalize to other regression models by replacing $\alpha + (s_i - s_0)^T \beta$ in (4) by an appropriate $m(s_i)$.

73
Regression method – 3: Special cases

- For local-constant regression, we set $\beta = 0$
- Then if $K_\epsilon(\cdot)$ is replaced by
 \[I_\epsilon(t) = \epsilon^{-1} \mathbb{I}(t \leq \epsilon) \]
 get
 \[\hat{\alpha} = \frac{\sum \theta_i I_\epsilon(||s_i - s_0||)}{\sum I_\epsilon(||s_i - s_0||)} \]
 which is the rejection method estimate

Choice of ϵ

- Set ϵ to be a quantile, P_ϵ, of the empirical distribution of simulated values of $||s_i - s_0||$
- The choice of ϵ involves, as ever, a trade-off between bias and variance:
 - As $\epsilon \uparrow$, you use more observations, so less variance . . .
 - . . . but more bias

Note: as $\epsilon \downarrow 0$, both rejection and regression methods are equivalent

Implementation: the abc package in R implements these and many other methods.
Heteroscedastic regression

There is a literature on heteroscedastic models. The regression equation is

\[\theta = m(s) + \sigma(s)\xi \]

where \(\sigma(s) \) is the square root of conditional variance of \(\theta \) given \(s \), and \(\xi \) is the residual. Using \(\hat{\cdot} \) to denote estimator, the adjusted observations are

\[\theta^*_i = \hat{m}(s_0) + \hat{\sigma}(s_0)\hat{\xi}_i = \hat{m}(s_0) + \frac{\hat{\sigma}(s_0)}{\hat{\sigma}(s_i)}(\theta_i - \hat{m}(s_i)) \]

Markov Chain Monte Carlo methods

MCMC – 1

The idea is to construct an ergodic Markov chain that has \(f(\theta|D) \) as its stationary distribution, in the case that normalising constants cannot be computed. Here is Hastings’ (Biometrika, 1970) classic method:

1. Now at \(\theta \)
2. Propose move to \(\theta' \) according to \(q(\theta \rightarrow \theta') \)
3. Calculate the Hastings ratio

\[h = \min \left(1, \frac{\mathbb{P}(D \mid \theta')\pi(\theta')q(\theta' \rightarrow \theta)}{\mathbb{P}(D \mid \theta)\pi(\theta)q(\theta \rightarrow \theta')} \right) \]

4. Accept \(\theta' \) with probability \(h \), else return \(\theta \)
MCMC – 2

There are more things to check:
• Is the chain ergodic?
• Does it mix well?
• Is the chain stationary?
• Burn in?
• Diagnostics of the run (no free lunches) – see coda package in R for example

MCMC – 3

MCMC in evolutionary genetics setting

• Small tweaks in the biology often translate into huge changes in algorithm
• Long development time
• All the usual problems with convergence
• Almost all the effort goes into evaluation of likelihood
Here is an ABC version (Marjoram et al, PNAS, 2003)

1. Now at θ
2. Propose a move to θ' according to $q(\theta \rightarrow \theta')$
3. Generate D' using θ'
4. If $D' = D$, go to next step, else return θ
5. Calculate
 $$ h = h(\theta, \theta') = \min \left(1, \frac{\pi(\theta')q(\theta' \rightarrow \theta)}{\pi(\theta)q(\theta' \rightarrow \theta')} \right) $$
6. Accept θ' with probability h, else return θ

Lemma: The stationary distribution of the chain is, indeed, $f(\theta|D)$.

Proof: In class . . .
ABC-MCMC – 3

Here is the practical version, for data \mathcal{D}, summary statistics S

4'. If $\rho(D', D) \leq \epsilon$, go to next step, otherwise return θ

4''. If $\rho(S', S) \leq \epsilon$, go to next step, otherwise return θ

for some suitable metric ρ and approximation level ϵ

Observations now from $f(\theta \mid \rho(D', D) \leq \epsilon)$ or $f(\theta \mid \rho(S', S) \leq \epsilon)$

Variations on a theme – 1

There have been many variants on the theme. For example, one might use multiple simulations from a given θ to get a better estimate of the likelihood. This is known as the pseudo-marginal method (Beaumont, *Genetics*, 2003; Tavaré et al. *PNAS*, 2003; Andrieu & Roberts *Ann Statist*, 2009). The idea is to simulate pairs of data points $(\theta, \hat{P}(D \mid \theta))$:

2'. If at θ' simulate B values of D', and use these to estimate $P(D \mid \theta')$ via

$$\hat{P}(D \mid \theta') = \frac{1}{B} \sum_{j=1}^{B} 1_{(D' = D)}$$

3'. If this is 0, stay at θ; else
Variations on a theme – 2

4’. Accept θ' and $\hat{P}(D|\theta')$ with probability

$$h = \min \left(1, \frac{\hat{P}(D|\theta')\pi(\theta')q(\theta' \rightarrow \theta)}{\hat{P}(D|\theta)\pi(\theta)q(\theta \rightarrow \theta')} \right)$$

else stay at θ.

Variations on a theme – 3

- Convergence an issue?
- These methods can often be started at stationarity, so no burn-in
- If the underlying probability model is complex, simulating data will often not lead to acceptance. Thus need update for parts of the probability model (data augmentation)
- There are versions with varying ϵ; see Bortot et al (JASA, 2007) for example
- There are now many hybrid versions of these approaches (e.g. ABC-within-Gibbs)
Variations on a theme – 4

Bortot et al (JASA, 2007) have a nice way to include ϵ in the ABC-MCMC approach

1. Now at (θ, ϵ)
2. Propose a move to (θ', ϵ') according to $q((\theta, \epsilon) \rightarrow (\theta', \epsilon'))$
3. Generate D' from model with parameters θ'
4. Calculate
 \[
 h = \min \left(1, \frac{\pi(\theta')\pi(\epsilon')q((\theta', \epsilon') \rightarrow (\theta, \epsilon))}{\pi(\theta)\pi(\epsilon)q((\theta, \epsilon) \rightarrow (\theta', \epsilon'))} \, \mathbb{1}(\rho(S', S) \leq \epsilon) \right)
 \]
5. Accept (θ', ϵ') with probability h, else return (θ, ϵ)

Variations on a theme – 5

- The idea is to run the chain with typical values of ϵ being small
- Filter the series $\{(\theta_i, \epsilon_i)\}$ by restricting to $\{i : \epsilon_i < \epsilon_T\}$ after accepting values from the chain
 These values provide an estimate of $f(\theta|D)$ from values of $f(\theta|\rho \leq \epsilon_T)$ with weights given by $\pi(\epsilon)$
- The authors use priors of the form $\epsilon \sim \text{Exp}(\tau)$
SMC – 1

Repetitive sampling from the prior does not seem sensible, and various approaches have been designed to deal with this. Here is a version from Beaumont et al (Biometrika, 2009)

The aim is to

• perform weighted resampling of the points already drawn
• shrink ϵ as you go

In what follows,

• D_0 are the observed data
• $\epsilon_1 > \epsilon_2 > \cdots > \epsilon_T$ are given

SMC – 2

1. For iteration $t = 1$,
 1. For $i = 1, 2, \ldots, N$

 Simulate $\theta_i^{(1)} \sim \pi(\theta)$ and D from the model with parameter $\theta_i^{(1)}$ until $\rho(D, D_0) < \epsilon_1$

 Set $w_i^{(1)} = 1/N$

 Calculate $\tau_2^2 = $ twice the empirical variance of the $\{\theta_i^{(1)}\}$
SMC – 3

2 For iteration $t = 2, \ldots, T$,

 For $i = 1, 2, \ldots, N$, repeat

 Choose θ_i^* from the $\theta_j^{(t-1)}$'s with probability $w_j^{(t-1)}$

 Generate $\theta_i^{(t)} \sim N(\theta_i^*, \tau^2_t)$, and D from the model with parameter $\theta_i^{(t)}$

 until $\rho(D, D_0) < \epsilon_t$

 Set

 $$w_i^{(t)} \propto \frac{\pi(\theta_i^{(t)})}{\sum_{j=1}^N w_j^{(t-1)} \phi(\tau^{-1}_{t-1}(\theta_i^{(t)} - \theta_j^{(t-1)}))}$$

 Calculate $\tau^2_{t+1} = \text{twice the empirical variance of the } \{\theta_i^{(t)}\}$

SMC – 4

In the previous slide, $N(\mu, \sigma^2)$ denotes the Normal distribution with mean μ and variance σ^2, and $\phi(x)$ is the standard Normal density function.

Notes:
- Equally well, we can replace D and D_0 with $S(D)$ and $S(D_0)$
- Can also replace the step

 $$\theta_i^{(t)} \sim N(\theta_i^*, \tau^2_t)$$

 with

 $$\theta_i^{(t)} \sim K(\cdot | \theta_i^*, \tau^2_t)$$

 where K need not be a Gaussian kernel, but could be a t distribution for example
SMC – 5: Rationale

- In step [1] we simulate from the prior and keep the N closest points (so this is rejection-ABC). This set of points is drawn (roughly) from the posterior.
- Next, fit a density with kernel K

$$q(\theta) := \sum_{j=1}^{N} w_j^{(t-1)} K(\theta | \theta_j^{(t-1)}, \tau^2_\theta)$$

around the points, and resample values from this.
- then reduce the tolerance, ϵ
- simulate data and their summary statistics
- weight each point by $\pi(\cdot)/q(\cdot)$ to allow for the fact that the points are not samples from the prior.