SMC – 5: Rationale

- In step [1] we simulate from the prior and keep the N closest points (so this is rejection-ABC). This set of points is drawn (roughly) from the posterior
- Next, fit a density with kernel K

$$q(\theta) := \sum_{j=1}^{N} w_j^{(t-1)} K(\theta | \theta_j^{(t-1)}, \tau^2_t)$$

around the points, and resample values from this
- then reduce the tolerance, ϵ
- simulate data and their summary statistics
- weight each point by $\pi(\cdot)/q(\cdot)$ to allow for the fact that the points are not samples from the prior

Lecture 4. June 11 2019

Recap

Last time we looked at
- Regression adjustment
- MCMC-ABC
- SMC-ABC

Today we will look at an example of ABC-Gibbs, and model choice.

The first topic is motivated by a recent article of Clarté et al. (2019) Component-wise Approximate Bayesian Computation via Gibbs-like steps. arXiv:1905.13599v1
Estimating the divergence time of primates

Model choice

Introduction

- Model choice is a difficult issue for ABC
- Obviously scientific drawback for hypothesis testing

ABC model choice is a conceptual problem: wrong vector of summary statistics may produce inconsistent inference

Two issues:
- not easy to select good summary statistics
- even getting a set which give convergent Bayes factors may give poor approximation at practical level

Standard ABC model choice, given $\mathcal{D}, S(\mathcal{D})$

First example adds the model index as an extra parameter, $m \in \mathcal{M}$.

- For $i = 1, \ldots, n$ do
 - Generate m from $\pi(\mathcal{M})$
 - Generate θ from prior $\pi_m(\theta)$
 - Generate \mathcal{D}' from model $f_m(\mathcal{D}|\theta)$
 - Set $m_i = m, \theta_i = \theta, s'_i = S(\mathcal{D}')$
- Return the values m_i with k smallest distances $\rho(s'_i, s)$

The chosen model indices are a sample from $\pi(m|S)$
Local logistic regression model choice

Note that
\[P(M = m | S = s) = E(\mathbb{I}_{M = m} | S = s) \]
so we can treat the analysis as a regression problem: iid draws from law of \((m, s)\), the response being indicator of whether simulation comes from model \(m\), covariates being the summary statistics. For example,

- Generate \(N\) samples \((m_i, s_i)\)
- Compute weights \(w_i = K_h(s_i - s_0)\) where \(K\) is a kernel density and \(h\) the bandwidth estimated from the \(s_i\)
- Estimate probabilities \(P(M = m | s_0)\) using logistic link (e.g. in \texttt{vgam} in R) from the weighted data \((m_i, s_i, w_i)\)

Warning: \(P(M = m | S = s_0)\) is a surrogate for \(P(M = m | D)\) . . .

Bayes factors

ABC posterior probability estimators are (i) \textit{imprecise} and (ii) \textit{inconsistent}, so may not converge to a point mass on the true model.

We want to estimate posterior ratios of the model probabilities, for example
\[\frac{P(M_1 | D)}{P(M_2 | D)} \]

Note that
\[\frac{P(M_1 | D)}{P(M_2 | D)} = \frac{P(D | M_1)}{P(D | M_2)} \frac{\pi(M_1)}{\pi(M_2)} \]

The term
\[B_{12} := \frac{P(D | M_1)}{P(D | M_2)} \]

is known as the \textit{Bayes factor}.
• If we can estimate this ratio, then we can compute the posterior ratio on left of (5)
• We can approximate B_{12} using the relative acceptance rate of the rejection method

But what happens with summary statistics?
It turns out that things can get complicated, because

$$B_{12} = \frac{\mathbb{P}(D|\mathcal{M}_1)}{\mathbb{P}(D|\mathcal{M}_2)} = \frac{\mathbb{P}(D|S(D), \mathcal{M}_1) \mathbb{P}(S(D)|\mathcal{M}_1)}{\mathbb{P}(D|S(D), \mathcal{M}_2) \mathbb{P}(S(D)|\mathcal{M}_2)} = \frac{\mathbb{P}(D|S(D), \mathcal{M}_1)}{\mathbb{P}(D|S(D), \mathcal{M}_2)} B_{12}^S$$

Thus a summary statistic is sufficient for comparing \mathcal{M}_1 and \mathcal{M}_2 if, and only if,

$$\mathbb{P}(D|S(D), \mathcal{M}_1) = \mathbb{P}(D|S(D), \mathcal{M}_2)$$

Note that
• Sufficiency for \mathcal{M}_1 or \mathcal{M}_2 alone, or for both models, does not guarantee sufficiency for ranking the models
• If the summary statistic is sufficient for a model \mathcal{M} in which both \mathcal{M}_1 and \mathcal{M}_2 are both nested, then models can be ranked
• What are we to do?
• Choose maximum a posteriori model via machine learning (e.g. random forests)