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Wright-Fisher model with selection

Two types a, A Population size N , discrete generations

◮ Each individual produces (effectively infinite) number of
gametes;

◮ A type a produces (1− s) times as many gametes as a type A;

◮ Sample N offspring uniformly at random from pool of
gametes.

If proportion of a-alleles in parental population is p, then the
probability that an offspring is type a is

(1− s)p

(1− s)p+ (1− p)
=

(1− s)p

1− sp
≈ p− sp(1− p).



Wright Fisher diffusion with selection

For large populations, approximate dynamics by

dp = −sp(1− p)dt+

√
1

Ne
p(1− p)dWt

P[deleterious mutation arising in single individual fixes] ≈ e−2Nes

Selection more effective when population size is bigger
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Selection more effective when population size is bigger

less effective at the front of an expanding population?



Space

. . . there can be advantages to living life on the edge, which might
compensate for deleterious mutations



Accumulation of deleterious mutations (no space)

Assumptions:

◮ asexual population;

◮ constant size N ;

◮ individuals accumulate mutations;

◮ all mutations are deleterious.

An individual that has accumulated k deleterious mutations has
relative fitness (1− s)k.

Notation:
Xk(t) = proportion of individuals at time t that carry exactly k
deleterious mutations.



Haigh’s model

Wright-Fisher style dynamics

◮ Population evolves in discrete generations.

◮ Each offspring (independently) chooses parent (in a weighted
way) from previous generation.

◮ All mutations are passed from parent to offspring.

◮ In addition, each offspring accumulates Poisson number of
new mutations.



A more mathematical formulation

Frequency profile in generation t: x(t) = (xk(t))k=0,1,... ∈ P(N0)

Nxk(t) individuals in generation t carry k mutations.
Number of mutations inherited from parent:

P[H = k] =
(1− s)kxk(t)

Z(t)
,

where Z(t) =
∑∞

k=0(1− s)kxk(t).

Number of new mutations: J ∼ Poiss(µ).

Let K1, . . . ,KN be independent copies of H + J .

Xk(t+ 1) =
1

N
♯{i : Ki = k}.



Infinite population limit: Poisson frequency profile

Suppose

xk(t) =
θk

k!
e−θ, k ∈ N0; Z(t) = e−θs.

P[H = k] =
(1− s)kxk(t)

Z(t)
=

(1− s)kθke−θ(1−s)

k!
.

Then H + J ∼ Poiss

(
(1− s)θ + µ

)
.

As N → ∞

Xk(t+ 1) →
(
(1− s)θ + µ

)k
e−

(
(1−s)θ+µ

)

k!
.

Choose θ = µ/s, x(t+ 1) = x(t).



Adding noise: Muller’s ratchet

For N → ∞, proportion of population with no mutations
x0(t) → e−µ/s = e−θ as t → ∞.

For N < ∞, after finite random time Nx0(T0) = 0. The ratchet

clicks.

Nx1(T1) = 0, Nx2(T2) = 0 . . .

Population becomes inexorably less fit.
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Introducing space

◮ Population expanding its range.

◮ Mutations arising at the front, can reach high frequency, even
if they confer no selective advantage.

(a) (b) (c)

Gene surfing; Deleterious surfers ❀ Expansion load



What if life is not so nice on the edge?
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◮ Maximum per capita growth rate achieved at intermediate
density.
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Allee effect deterministic case

Roques et al. PNAS (2012).
∂tu = ∂xxu+ u(1− u)(u− ρ), ρ ∈ (0, 1/2).
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∑∞

k=0 ni,k(t), total population size in deme i.

An individual in deme i and carrying k mutations

◮ gives birth to a new individual at rate λk(Ni);

◮ dies at rate δ(Ni);

◮ migrates to i± 1 at rate m.

λk(Ni) = r(1− s)k(B
Ni

N
+ 1), δ(Ni) = r(B

Ni

N
+ 1)

Ni

N
.

With probability µ, offspring has one more mutation than parent.
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λk(Ni) = r(1− s)k(B
Ni

N
+ 1), δ(Ni) = r(B

Ni

N
+ 1)

Ni

N
.

B = 0, stochastic version of usual logistic growth, with ‘carrying
capacity’ N .

n 7→ λ0(n)− δ(n) maximised at

n = max
{
0,

N(B − 1)

2B

}
.

For B ≤ 1, no Allee effect; B > 1 Allee effect.
Increasing B increases strength of Allee effect.



Large population scalings

Scale population density N , diffusive scaling of spatial motion, no
scaling of reproduction rates.

For i ∈ Z and x = i/L set

∀k ≥ 0, uNk (x, t) =
nN
i,k(t)

N
;



Large population scalings

Scale population density N , diffusive scaling of spatial motion, no
scaling of reproduction rates.

For i ∈ Z and x = i/L set

∀k ≥ 0, uNk (x, t) =
nN
i,k(t)

N
;

U =
∑

k≥0

uk, u−1 ≡ 0,

∂uk
∂t

= m
∂2uk
∂x2

+ r(BU + 1)
(
uk((1 − µ)(1− s)k − U)

+ µ(1− s)k−1uk−1.
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Weak selection and mutation

We suppose that s, µ ≪ 1.

Limiting model becomes:

U =
∑

k≥0

uk, u−1 ≡ 0,

∂uk
∂t

= m
∂2uk
∂x2

+ r(BU + 1)
[
uk(1− ks− U)

+ µ(uk−1 − uk)
]
.

If uk(x, 0) independent of x, then so is uk(x, t) for all t.
For each k0 ≥ 0, there corresponds a steady state solution of the
form

u∗k = (1− µ− k0s)e
−θ θk−k0

(k − k0)!
, k ≥ k0



A travelling wave solution

If initial genetic composition is Poiss(θ) for all x ∈ R, with
θ = µ/s, then it remains so. Then,

∂U

∂t
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∂x2
+ rU(BU + 1)(1 − µ− U).



A travelling wave solution

If initial genetic composition is Poiss(θ) for all x ∈ R, with
θ = µ/s, then it remains so. Then,

∂U

∂t
= m

∂2U

∂x2
+ rU(BU + 1)(1 − µ− U).

Hadeler & Rothe (1975): travelling wave solution for all speeds
c ≥ c0, where c0 is given by

c0 =
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√
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2B (B(1− µ) + 2) if B ≥ 2
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√
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1−µ (pulled)

√
mr
2B (B(1− µ) + 2) if B ≥ 2

1−µ (pushed).

If Û wave profile of a travelling wave with speed c, then

∀k ≥ 0,∀x ∈ R,∀t ≥ 0, uk(t, x) = e−θ θ
k

k!
Û(x− ct)

is a travelling wave solution to our system.
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A first look at recovery of fitness

The ‘population’ travelling wave above connects the stable limit

u∗k = (1− µ− k0s)e
−θ θk−k0

(k − k0)!

with k0 = 0 to the trivial null equilibrium.

Consider the system with initial condition

∀x ∈ R,∀k ≥ 0, uk(0, x) =

{
(1− µ− s)e−θ θk−1

(k−1)! if x > x0

(1− µ)e−θ θk

k! if x ≤ x0,

for some x0 ∈ R.

Individuals without mutations are able to invade the region where
‘the ratchet has clicked’. The ‘wave of expansion’ is always pulled.
It has speed O(

√
s).



Population waves and genetic waves

(a) (b)

(c) (d)
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Adding noise

We expect our system of deterministic equations to be replaced by
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where (Ẇk)k≥0 are independent space-time white noises.
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uk, u−1 ≡ 0,

∂tuk = m∂xxuk + r(BU + 1)
(
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)

+

√
r

N
uk(BU + 1)(1− ks+ U)Ẇk,

where (Ẇk)k≥0 are independent space-time white noises.

We have not analysed this system but instead simulated our
individual based model.
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Defining a click

Write
nmaxk (t) = max{i ∈ Z : ni,k(t) > 0}

(location of rightmost individual carrying k mutations at time t).

T1 = inf
{
t ≥ 0 : ∃s ≥ t, nmax1 (s)− nmax0 (s) > d

and ∀r ∈ [t, s], nmax1 (r) > nmax0 (r)
}
.

T1 is the first moment when individuals with one mutation get
ahead of individuals with no mutations and will get d demes ahead
before being caught up.

We set d = 30. Once nmax1 − nmax0 > d it is unlikely that the inner
wave catches up before entire habitat colonised.



Click rate and the Allee effect

∂tuk = m∂xxuk + r(BU + 1)
(
uk(1− ks− U) + µ(uk−1 − uk)

)

+

√
r

N
uk(BU + 1)(1− ks+ U)Ẇk,

Changing B has antagonistic effects on click rate:
◮ increases the strength of the Allee effect (slows down clicks);
◮ increases the strength of drift (speeds up clicks).

Which prevails depends on N
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Click rate and the Allee effect
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◮ Fix B, click rate decreases as N increases;

◮ Small N , genetic drift prevails, gene flow less efficient at
restoring diversity in the front;

◮ Large N , gene flow prevails;

◮ N has more impact on T1 for pushed waves, almost no clicks
for large N .



How do mutations accumulate?
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Two dimensions

At times t = 1, 2, . . . , 150, record least number of mutations in
each newly colonised deme.

ni,j;k(t) := number of individuals in deme (i, j) with k mutations.
Ni,j := total number of individuals in deme (i, j).

tcoli,j = inf
{
t ∈ {1, 2, . . . , 150} : Ni,j(t) > 0 and Ni,j(t− 1) = 0

}
;

kcoli,j = inf
{
k ≥ 0 : ni,j;k(t

col

i,j ) > 0
}
.
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Genealogies of pulled and pushed waves?

Stochastic Fisher-KPP equation
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Genealogies of pulled and pushed waves?

Stochastic Fisher-KPP equation

∂tu = ∂xxu+ u(1− u) +
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u(1− u)Ẇ

Genealogy of sample from close to the wavefront dominated by
rare events in which individual far in the front produces large
family; on suitable timescales Bolthausen-Sznitman coalescent

Stochastic analogue of example of Roques et al. (2012)

∂tu = ∂xxu+ u(1− u)(u− ρ) +

√
1

ρe
u(1− u)Ẇ

ρ ∈ (0, 1/2)
For a discrete space, individual based analogue (a spatial Moran
model), the genealogy of sample from close to the wavefront on
suitable timescales given by Kingman coalescent (Penington 2000).


