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Wright-Fisher model with selection

Two types a, A Population size N, discrete generations

» Each individual produces (effectively infinite) number of
gametes;
» A type a produces (1 — s) times as many gametes as a type A;
» Sample N offspring uniformly at random from pool of
gametes.
If proportion of a-alleles in parental population is p, then the
probability that an offspring is type a is
(1—s)p (1—s)p
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Wright Fisher diffusion with selection

For large populations, approximate dynamics by

1
dp = —sp(1 —p)dt + 4/ ﬁp(l —p)dW;

P[deleterious mutation arising in single individual fixes] ~ e=2Ves

Selection more effective when population size is bigger



Wright Fisher diffusion with selection

For large populations, approximate dynamics by

1
dp = —sp(1 —p)dt + 4/ ﬁp(l —p)dW;
e

P[deleterious mutation arising in single individual fixes] ~ e=2Ves

Selection more effective when population size is bigger

less effective at the front of an expanding population?



Space

... there can be advantages to living life on the edge, which might
compensate for deleterious mutations
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Accumulation of deleterious mutations (no space)

Assumptions:
» asexual population;
P constant size N;
P individuals accumulate mutations;
>

all mutations are deleterious.

An individual that has accumulated k deleterious mutations has
relative fitness (1 — s)F.

Notation:
X (t) = proportion of individuals at time ¢ that carry exactly k
deleterious mutations.



Haigh's model

Wright-Fisher style dynamics

» Population evolves in discrete generations.

» Each offspring (independently) chooses parent (in a weighted
way) from previous generation.

» All mutations are passed from parent to offspring.

» In addition, each offspring accumulates Poisson number of
new mutations.



A more mathematical formulation
Frequency profile in generation t: x(t) = (z£(t))k=01,.. € P(No)

Nz (t) individuals in generation ¢ carry k mutations.
Number of mutations inherited from parent:

(1-— s)k./l;k(t).

PIH = k] =

where Z(t) = 322, (1 — s)Fay(t).
Number of new mutations: J ~ Poiss(u).

Let K1,..., Ky be independent copies of H + J.

Xp(t+1) = %ﬂ{z’ K = k).



Infinite population limit: Poisson frequency profile

Suppose

Y _ g)kpke—0(1—s)
o _ g Z)(t)k(t) UL |

Then H + J ~ Poiss((1 — s)0 + p).
As N — oo

(1= )6+ p)"e (1-9742)
Kl '

Xk(t + 1) —

Choose 0 = /s, x(t + 1) = x(t).



Adding noise: Muller's ratchet

For N — oo, proportion of population with no mutations
zo(t) = e =% as t — oo.

For N < oo, after finite random time Nzo(1p) = 0. The ratchet
clicks.

-
\.

Na:l(Tl) = 0, N.TQ(TQ) =0...

Population becomes inexorably less fit.



» Population expanding its range.

40> «Fr « >

« =

>

DA



Introducing space

» Population expanding its range.

> Mutations arising at the front, can reach high frequency, even
if they confer no selective advantage.
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Introducing space

» Population expanding its range.

> Mutations arising at the front, can reach high frequency, even
if they confer no selective advantage.

(a) (b) (c)

Densities

Position

Gene surfing; Deleterious surfers ~» Expansion load



What if life is not so nice on the edge?




What if there is an Allee effect?

> Maximum per capita growth rate achieved at intermediate
density.



What if there is an Allee effect?

> Maximum per capita growth rate achieved at intermediate
density.
» No Allee effect ~+ pulled wave;

» Strong Allee effect ~» pushed wave,



What if there is an Allee effect?

> Maximum per capita growth rate achieved at intermediate
density.

> No Allee effect ~ pulled wave;

» Strong Allee effect ~» pushed wave,

(a) (c)

od
w
el O
A 8 2\
] 2 O
S 5 o
& o 388
000000000000\,
0 00 oe
el =
g & S
s O
g & \
e S
000000000000 \

Position



Allee effect deterministic case

Roques et al. PNAS (2012).
drtt = Duu +u(l —u)u—p),  p € (0,1/2).
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I
An individual based model

n; 1 (t) number of individuals in deme i € Z carrying k mutations.

N;(t) = > 72 o nik(t), total population size in deme .

DA



An individual based model

n; 1 (t) number of individuals in deme i € Z carrying k mutations.
Ni(t) = > 72 gnik(t), total population size in deme 1.

An individual in deme ¢ and carrying k mutations
> gives birth to a new individual at rate Ag(N;);
> dies at rate §(1V;);

P> migrates to ¢ == 1 at rate m.



An individual based model

n; 1 (t) number of individuals in deme i € Z carrying k mutations.
Ni(t) = > 72 gnik(t), total population size in deme 1.

An individual in deme ¢ and carrying k mutations
> gives birth to a new individual at rate Ag(N;);
> dies at rate §(1V;);

P> migrates to ¢ == 1 at rate m.

Me(N;) = 7(1 — s)’“(BN +1), 6N =r(B5 +1) 5



An individual based model

n; 1 (t) number of individuals in deme i € Z carrying k mutations.
Ni(t) = > 72 gnik(t), total population size in deme 1.

An individual in deme ¢ and carrying k mutations
> gives birth to a new individual at rate Ag(N;);
> dies at rate §(1V;);

P> migrates to ¢ == 1 at rate m.

Ae(N;) = r(1 — s)k(B% 11), 6(N) = (B 1)%.

=z

With probability u, offspring has one more mutation than parent.



Ae(Ni) = (1 - 5)"(B

5(N;) =r(B
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Me(N) = r(1 — s)i (B

—+1 N;) = — —.
N-I-), 5(V;) r(BN-I-l)N
capacity’ N.

B = 0, stochastic version of usual logistic growth, with ‘carrying
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I
The role of B

Me(N;) = (1 — ) (B2

: N, N,
1 o(V;) = u— .

D), SN = (B + )Y

capacity’ N.

B = 0, stochastic version of usual logistic growth, with ‘carrying
n — Ao(n) — d(n) maximised at
N(B
n = max {0, (

NB -1y

2B
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T
The role of B

Me(N;) = (1 — ) (B2

N—Fl), 6(N’)_T(BN+1)N'
capacity’ N.

B = 0, stochastic version of usual logistic growth, with ‘carrying

n — Ao(n) — d(n) maximised at

n= max{O, M}

2B

For B <1, no Allee effect; B > 1 Allee effect.

Increasing B increases strength of Allee effect.

m]

=

DA



Scale population density N, diffusive scaling of spatial motion, no
scaling of reproduction rates.

For i€ Z and x =i/L set

nlV (t
VE >0, ub (z,t) = V0

N ;
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Large population scalings

Scale population density NV, diffusive scaling of spatial motion, no
scaling of reproduction rates.

For i€ Z and x = i/L set




Weak selection and mutation

We suppose that s, u < 1.

Limiting model becomes:

U:Zuk, u_1 =0,

k>0

8uk a2uk
Tk _ BU + 1) [up(1 — ks — U
5 = Mg +7(BU + 1) [ug(1 — ks )

+ pup—y — ug)].



Weak selection and mutation

We suppose that s, u < 1.

Limiting model becomes:

U:Zuk, u_1 =0,

k>0

8uk 82uk
5 = M2 +7(BU + 1) [ug(1 — ks = U)

+ pup—y — ug)].

If ug(z,0) independent of x, then so is uy(x,t) for all ¢.

For each kg > 0, there corresponds a steady state solution of the
form

o 9k—k0

O

up = (1 —p—kos)e



A travelling wave solution

If initial genetic composition is Poiss(f) for all = € R, with
0 = /s, then it remains so. Then,

ou 82

oy = Mg TrUBU+ 1)1~ pu—0).



A travelling wave solution

If initial genetic composition is Poiss(f) for all = € R, with
0 = /s, then it remains so. Then,
ou _ U
at " ox?

Hadeler & Rothe (1975): travelling wave solution for all speeds
¢ > cg, Where ¢g is given by

+rU(BU +1)(1 — p—U).

2y/mr(1 — p) if B < 12, (pulled)
Ccy) —

sp(B(1—p)+2) ifB> ﬁ (pushed).



A travelling wave solution

If initial genetic composition is Poiss(f) for all = € R, with
0 = /s, then it remains so. Then,

o _ P
ot 82

Hadeler & Rothe (1975): travelling wave solution for all speeds
¢ > cg, Where ¢g is given by

+rUBU+1)(1—p-0U).

2/mr(1— p) if B < 12, (pulled)
co =
sp(B(1—p)+2) ifB> ﬁ (pushed).
If U wave profile of a travelling wave with speed ¢, then
0% ~
Vk > 0,Vx € RVt >0, ug(t,z) = e_HFU(:L' —ct)

is a travelling wave solution to our system.



A first look at recovery of fitness

The ‘population’ travelling wave above connects the stable limit

_p ek—k’o

(] — gy — -

with kg = 0 to the trivial null equilibrium.



A first look at recovery of fitness

The ‘population’ travelling wave above connects the stable limit

_p ek’—k’o

(] — gy — -

with kg = 0 to the trivial null equilibrium.

Consider the system with initial condition

_p pk—1
(1—p—se 9(%-1)!

Ve € R,Vk >0, ug(0,2) = ‘
(1= p)e "%

for some xg € R.

if £ >z

if x < Z0,



A first look at recovery of fitness

The ‘population’ travelling wave above connects the stable limit

0 ek—k’o
r=0—p—kps)e " ——
with kg = 0 to the trivial null equilibrium.
Consider the system with initial condition
1—p—s)e 0 ifa>
Vo € R,k > 0, ug(0,2) = (L=p=s)egoy fz>
(1-— u)e‘e% if x <z,

for some xg € R.

Individuals without mutations are able to invade the region where

‘the ratchet has clicked’. The ‘wave of expansion’ is always pulled.
It has speed O(+/s).



Population waves and genetic waves
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Adding noise

We expect our system of deterministic equations to be replaced by

UZZuk, u_1 =0,

Opu, = mOyzuy + r(BU + 1)(uk(1 — ks —U) + p(ug—1 — uk))

+ \/%uk(BU +1)(1 — ks + U)W,

where (Wk)kzo are independent space-time white noises.



Adding noise

We expect our system of deterministic equations to be replaced by

U:Zuk, u_1 =0,

Opu, = mOyzuy + r(BU + 1)(uk(1 — ks —U) + p(ug—1 — uk))

+ \/%uk(BU +1)(1 — ks + U)W,

where (Wk)kzo are independent space-time white noises.

We have not analysed this system but instead simulated our
individual based model.



Write

o (t) = max{i € Z : n; (t) > 0}

(location of rightmost individual carrying k mutations at time t).
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Defining a click
Write
X (t) = max{i € Z : n; (t) > 0}

(location of rightmost individual carrying k& mutations at time t).

T = inf {t >0:3s > t,n1*(s) —ng*(s) > d
and Vr € [t, 5], ¥ (r) > ngaX(T)}.
T7 is the first moment when individuals with one mutation get

ahead of individuals with no mutations and will get d demes ahead
before being caught up.



Defining a click
Write
X (t) = max{i € Z : n; (t) > 0}

(location of rightmost individual carrying k& mutations at time t).

T = inf {t >0:3s > t,n1*(s) —ng*(s) > d
and Vr € [t, 5], ¥ (r) > n’(’)‘ax(r)}.
T7 is the first moment when individuals with one mutation get

ahead of individuals with no mutations and will get d demes ahead
before being caught up.

We set d = 30. Once n7®* — n§®* > d it is unlikely that the inner
wave catches up before entire habitat colonised.



Click rate and the Allee effect

Opug, = mOyzui + r(BU + 1)(uk(1 —ks—=U) + p(ug—1 — uk))

+ ,\/%W;(BU +1)(1 —ks+ U)W};,

Changing B has antagonistic effects on click rate:
» increases the strength of the Allee effect (slows down clicks);
» increases the strength of drift (speeds up clicks).

Which prevails depends on N

@

Mean time of first click
Mean position of first click
o
paysnd

palind




Click rate and the Allee effect

Mean time of first click

Mean position of first click
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» Fix B, click rate decreases as IN increases;
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Click rate and the Allee effect
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» Fix B, click rate decreases as IN increases;

» Small N, genetic drift prevails, gene flow less efficient
restoring diversity in the front;

paysnd

p3jind

at



Click rate and the Allee effect
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» Fix B, click rate decreases as IN increases;

» Small NV, genetic drift prevails, gene flow less efficient at
restoring diversity in the front;

> Large N, gene flow prevails;



Click rate and the Allee effect
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» Fix B, click rate decreases as IN increases;

» Small NV, genetic drift prevails, gene flow less efficient at
restoring diversity in the front;

> Large N, gene flow prevails;

» N has more impact on 1} for pushed waves, almost no clicks
for large N.



How do mutations accumulate?
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At times t = 1,2,...,150, record least number of mutations in
each newly colonised deme.
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Two dimensions

At times t = 1,2,...,150, record least number of mutations in
each newly colonised deme.

n; j:k(t) := number of individuals in deme (4, j) with & mutations.
N; j = total number of individuals in deme (3, j).



Two dimensions

At times t = 1,2,...,150, record least number of mutations in
each newly colonised deme.

n; j:k(t) := number of individuals in deme (4, j) with & mutations.
N; j = total number of individuals in deme (3, j).

155 = inf {1t € {1,2,....150) : Ny (1) > 0 and Nyj(t —1) = 0}:

ket = inf {k > 05 ngsult652) > 0.



imensions
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Genealogies of pulled and pushed waves?

Stochastic Fisher-KPP equation

Ot = Ogzpu + u(l —u) + iu(l —u)W

Pe

Stochastic analogue of example of Roques et al. (2012)

Opu = Ogzu+u(l —u)(u — p) + iu(l —u)W
Pe

p€(0,1/2)
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Genealogy of sample from close to the wavefront dominated by
rare events in which individual far in the front produces large
family; on suitable timescales Bolthausen-Sznitman coalescent
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Genealogies of pulled and pushed waves?

Stochastic Fisher-KPP equation

1 .
Ou = Opgu+u(l —u) + 4/ —u(l —u)W
Pe
Genealogy of sample from close to the wavefront dominated by
rare events in which individual far in the front produces large
family; on suitable timescales Bolthausen-Sznitman coalescent

Stochastic analogue of example of Roques et al. (2012)

1
Opu = Ogpu+u(l —u)(u —p) + 4/ —u(l —u)W
Pe
p€(0,1/2)
For a discrete space, individual based analogue (a spatial Moran
model), the genealogy of sample from close to the wavefront on
suitable timescales given by Kingman coalescent (Penington 2000).



