SOME MATHEMATICAL MODELS OF EVOLUTION

II: Expanding Populations
Alison Etheridge University of Oxford

Thanks

Félix Foutel-Rodier, Sorbonne Université/Collège de France

Sarah Penington, University of Bath

Wright-Fisher model with selection

Two types a, A
Population size N, discrete generations

- Each individual produces (effectively infinite) number of gametes;
- A type a produces $(1-s)$ times as many gametes as a type A;
- Sample N offspring uniformly at random from pool of gametes.
If proportion of a-alleles in parental population is p, then the probability that an offspring is type a is

$$
\frac{(1-s) p}{(1-s) p+(1-p)}=\frac{(1-s) p}{1-s p} \approx p-s p(1-p)
$$

Wright Fisher diffusion with selection

For large populations, approximate dynamics by

$$
d p=-s p(1-p) d t+\sqrt{\frac{1}{N_{e}} p(1-p)} d W_{t}
$$

\mathbb{P} [deleterious mutation arising in single individual fixes] $\approx e^{-2 N_{e} s}$
Selection more effective when population size is bigger

Wright Fisher diffusion with selection

For large populations, approximate dynamics by

$$
d p=-s p(1-p) d t+\sqrt{\frac{1}{N_{e}} p(1-p)} d W_{t}
$$

\mathbb{P} [deleterious mutation arising in single individual fixes] $\approx e^{-2 N_{e} s}$
Selection more effective when population size is bigger
less effective at the front of an expanding population?

Space

... there can be advantages to living life on the edge, which might compensate for deleterious mutations

Accumulation of deleterious mutations (no space)

Assumptions:

- asexual population;
- constant size N;
- individuals accumulate mutations;
- all mutations are deleterious.

An individual that has accumulated k deleterious mutations has relative fitness $(1-s)^{k}$.

Notation:
$X_{k}(t)=$ proportion of individuals at time t that carry exactly k deleterious mutations.

Haigh's model

Wright-Fisher style dynamics

- Population evolves in discrete generations.
- Each offspring (independently) chooses parent (in a weighted way) from previous generation.
- All mutations are passed from parent to offspring.
- In addition, each offspring accumulates Poisson number of new mutations.

A more mathematical formulation

Frequency profile in generation $t: \mathbf{x}(t)=\left(x_{k}(t)\right)_{k=0,1, \ldots} \in \mathcal{P}\left(\mathbb{N}_{0}\right)$
$N x_{k}(t)$ individuals in generation t carry k mutations.
Number of mutations inherited from parent:

$$
\mathbb{P}[H=k]=\frac{(1-s)^{k} x_{k}(t)}{Z(t)},
$$

where $Z(t)=\sum_{k=0}^{\infty}(1-s)^{k} x_{k}(t)$.
Number of new mutations: $J \sim \operatorname{Poiss}(\mu)$.
Let K_{1}, \ldots, K_{N} be independent copies of $H+J$.

$$
\mathbf{X}_{k}(t+1)=\frac{1}{N} \sharp\left\{i: K_{i}=k\right\} .
$$

Infinite population limit: Poisson frequency profile

Suppose

$$
\begin{gathered}
x_{k}(t)=\frac{\theta^{k}}{k!} e^{-\theta}, \quad k \in \mathbb{N}_{0} ; \quad Z(t)=e^{-\theta s} \\
\mathbb{P}[H=k]=\frac{(1-s)^{k} x_{k}(t)}{Z(t)}=\frac{(1-s)^{k} \theta^{k} e^{-\theta(1-s)}}{k!}
\end{gathered}
$$

Then $H+J \sim$ Poiss $((1-s) \theta+\mu)$.
As $N \rightarrow \infty$

$$
X_{k}(t+1) \rightarrow \frac{((1-s) \theta+\mu)^{k} e^{-((1-s) \theta+\mu)}}{k!}
$$

Choose $\theta=\mu / s, \mathbf{x}(t+1)=\mathbf{x}(t)$.

Adding noise: Muller's ratchet

For $N \rightarrow \infty$, proportion of population with no mutations $x_{0}(t) \rightarrow e^{-\mu / s}=e^{-\theta}$ as $t \rightarrow \infty$.

For $N<\infty$, after finite random time $N x_{0}\left(T_{0}\right)=0$. The ratchet clicks.

$$
N x_{1}\left(T_{1}\right)=0, N x_{2}\left(T_{2}\right)=0 \ldots
$$

Population becomes inexorably less fit.

Introducing space

- Population expanding its range.

Introducing space

- Population expanding its range.
- Mutations arising at the front, can reach high frequency, even if they confer no selective advantage.

Introducing space

- Population expanding its range.
- Mutations arising at the front, can reach high frequency, even if they confer no selective advantage.

Gene surfing;

Introducing space

- Population expanding its range.
- Mutations arising at the front, can reach high frequency, even if they confer no selective advantage.

Gene surfing;
(b)

(c)

Deleterious surfers \sim Expansion load

What if life is not so nice on the edge?

What if there is an Allee effect?

- Maximum per capita growth rate achieved at intermediate density.

What if there is an Allee effect?

- Maximum per capita growth rate achieved at intermediate density.
- No Allee effect \sim pulled wave;
- Strong Allee effect \leadsto pushed wave,

What if there is an Allee effect?

- Maximum per capita growth rate achieved at intermediate density.
- No Allee effect \sim pulled wave;
- Strong Allee effect \leadsto pushed wave,

Allee effect deterministic case

Roques et al. PNAS (2012).
$\partial_{t} u=\partial_{x x} u+u(1-u)(u-\rho), \quad \rho \in(0,1 / 2)$.

An individual based model

$n_{i, k}(t)$ number of individuals in deme $i \in \mathbb{Z}$ carrying k mutations.
$N_{i}(t)=\sum_{k=0}^{\infty} n_{i, k}(t)$, total population size in deme i.

An individual based model

$n_{i, k}(t)$ number of individuals in deme $i \in \mathbb{Z}$ carrying k mutations.
$N_{i}(t)=\sum_{k=0}^{\infty} n_{i, k}(t)$, total population size in deme i.
An individual in deme i and carrying k mutations

- gives birth to a new individual at rate $\lambda_{k}\left(N_{i}\right)$;
- dies at rate $\delta\left(N_{i}\right)$;
- migrates to $i \pm 1$ at rate m.

An individual based model

$n_{i, k}(t)$ number of individuals in deme $i \in \mathbb{Z}$ carrying k mutations.
$N_{i}(t)=\sum_{k=0}^{\infty} n_{i, k}(t)$, total population size in deme i.
An individual in deme i and carrying k mutations

- gives birth to a new individual at rate $\lambda_{k}\left(N_{i}\right)$;
- dies at rate $\delta\left(N_{i}\right)$;
- migrates to $i \pm 1$ at rate m.

$$
\lambda_{k}\left(N_{i}\right)=r(1-s)^{k}\left(B \frac{N_{i}}{N}+1\right), \quad \delta\left(N_{i}\right)=r\left(B \frac{N_{i}}{N}+1\right) \frac{N_{i}}{N}
$$

An individual based model

$n_{i, k}(t)$ number of individuals in deme $i \in \mathbb{Z}$ carrying k mutations.
$N_{i}(t)=\sum_{k=0}^{\infty} n_{i, k}(t)$, total population size in deme i.
An individual in deme i and carrying k mutations

- gives birth to a new individual at rate $\lambda_{k}\left(N_{i}\right)$;
- dies at rate $\delta\left(N_{i}\right)$;
- migrates to $i \pm 1$ at rate m.

$$
\lambda_{k}\left(N_{i}\right)=r(1-s)^{k}\left(B \frac{N_{i}}{N}+1\right), \quad \delta\left(N_{i}\right)=r\left(B \frac{N_{i}}{N}+1\right) \frac{N_{i}}{N}
$$

With probability μ, offspring has one more mutation than parent.

The role of B

$$
\lambda_{k}\left(N_{i}\right)=r(1-s)^{k}\left(B \frac{N_{i}}{N}+1\right), \quad \delta\left(N_{i}\right)=r\left(B \frac{N_{i}}{N}+1\right) \frac{N_{i}}{N}
$$

The role of B

$$
\lambda_{k}\left(N_{i}\right)=r(1-s)^{k}\left(B \frac{N_{i}}{N}+1\right), \quad \delta\left(N_{i}\right)=r\left(B \frac{N_{i}}{N}+1\right) \frac{N_{i}}{N}
$$

$B=0$, stochastic version of usual logistic growth, with 'carrying capacity' N.

The role of B

$$
\lambda_{k}\left(N_{i}\right)=r(1-s)^{k}\left(B \frac{N_{i}}{N}+1\right), \quad \delta\left(N_{i}\right)=r\left(B \frac{N_{i}}{N}+1\right) \frac{N_{i}}{N} .
$$

$B=0$, stochastic version of usual logistic growth, with 'carrying capacity' N.
$n \mapsto \lambda_{0}(n)-\delta(n)$ maximised at

$$
n=\max \left\{0, \frac{N(B-1)}{2 B}\right\} .
$$

The role of B

$$
\lambda_{k}\left(N_{i}\right)=r(1-s)^{k}\left(B \frac{N_{i}}{N}+1\right), \quad \delta\left(N_{i}\right)=r\left(B \frac{N_{i}}{N}+1\right) \frac{N_{i}}{N} .
$$

$B=0$, stochastic version of usual logistic growth, with 'carrying capacity' N.
$n \mapsto \lambda_{0}(n)-\delta(n)$ maximised at

$$
n=\max \left\{0, \frac{N(B-1)}{2 B}\right\} .
$$

For $B \leq 1$, no Allee effect; $B>1$ Allee effect. Increasing B increases strength of Allee effect.

Large population scalings

Scale population density N, diffusive scaling of spatial motion, no scaling of reproduction rates.

For $i \in \mathbb{Z}$ and $x=i / L$ set

$$
\forall k \geq 0, u_{k}^{N}(x, t)=\frac{n_{i, k}^{N}(t)}{N}
$$

Large population scalings

Scale population density N, diffusive scaling of spatial motion, no scaling of reproduction rates.

For $i \in \mathbb{Z}$ and $x=i / L$ set

$$
\begin{gathered}
\forall k \geq 0, u_{k}^{N}(x, t)=\frac{n_{i, k}^{N}(t)}{N} ; \\
U=\sum_{k \geq 0} u_{k}, \quad u_{-1} \equiv 0 \\
\frac{\partial u_{k}}{\partial t}=m \frac{\partial^{2} u_{k}}{\partial x^{2}}+r(B U+1)\left(u_{k}\left((1-\mu)(1-s)^{k}-U\right)\right. \\
\quad+\mu(1-s)^{k-1} u_{k-1} .
\end{gathered}
$$

Weak selection and mutation

We suppose that $s, \mu \ll 1$.

Limiting model becomes:

$$
\begin{gathered}
U=\sum_{k \geq 0} u_{k}, \quad u_{-1} \equiv 0 \\
\frac{\partial u_{k}}{\partial t}=m \frac{\partial^{2} u_{k}}{\partial x^{2}}+r(B U+1)\left[u_{k}(1-k s-U)\right. \\
\left.+\mu\left(u_{k-1}-u_{k}\right)\right]
\end{gathered}
$$

Weak selection and mutation

We suppose that $s, \mu \ll 1$.
Limiting model becomes:

$$
\begin{gathered}
U=\sum_{k \geq 0} u_{k}, \quad u_{-1} \equiv 0 \\
\frac{\partial u_{k}}{\partial t}=m \frac{\partial^{2} u_{k}}{\partial x^{2}}+r(B U+1)\left[u_{k}(1-k s-U)\right. \\
\left.+\mu\left(u_{k-1}-u_{k}\right)\right]
\end{gathered}
$$

If $u_{k}(x, 0)$ independent of x, then so is $u_{k}(x, t)$ for all t.
For each $k_{0} \geq 0$, there corresponds a steady state solution of the form

$$
u_{k}^{*}=\left(1-\mu-k_{0} s\right) e^{-\theta} \frac{\theta^{k-k_{0}}}{\left(k-k_{0}\right)!}, \quad k \geq k_{0}
$$

A travelling wave solution

If initial genetic composition is $\operatorname{Poiss}(\theta)$ for all $x \in \mathbb{R}$, with $\theta=\mu / s$, then it remains so. Then,

$$
\frac{\partial U}{\partial t}=m \frac{\partial^{2} U}{\partial x^{2}}+r U(B U+1)(1-\mu-U)
$$

A travelling wave solution

If initial genetic composition is $\operatorname{Poiss}(\theta)$ for all $x \in \mathbb{R}$, with $\theta=\mu / s$, then it remains so. Then,

$$
\frac{\partial U}{\partial t}=m \frac{\partial^{2} U}{\partial x^{2}}+r U(B U+1)(1-\mu-U)
$$

Hadeler \& Rothe (1975): travelling wave solution for all speeds $c \geq c_{0}$, where c_{0} is given by

$$
c_{0}= \begin{cases}2 \sqrt{m r(1-\mu)} & \text { if } B \leq \frac{2}{1-\mu} \text { (pulled) } \\ \sqrt{\frac{m r}{2 B}}(B(1-\mu)+2) & \text { if } B \geq \frac{2}{1-\mu} \text { (pushed) } .\end{cases}
$$

A travelling wave solution

If initial genetic composition is $\operatorname{Poiss}(\theta)$ for all $x \in \mathbb{R}$, with $\theta=\mu / s$, then it remains so. Then,

$$
\frac{\partial U}{\partial t}=m \frac{\partial^{2} U}{\partial x^{2}}+r U(B U+1)(1-\mu-U)
$$

Hadeler \& Rothe (1975): travelling wave solution for all speeds $c \geq c_{0}$, where c_{0} is given by

$$
c_{0}= \begin{cases}2 \sqrt{m r(1-\mu)} & \text { if } B \leq \frac{2}{1-\mu} \text { (pulled) } \\ \sqrt{\frac{m r}{2 B}}(B(1-\mu)+2) & \text { if } B \geq \frac{2}{1-\mu} \text { (pushed) }\end{cases}
$$

If \widehat{U} wave profile of a travelling wave with speed c, then

$$
\forall k \geq 0, \forall x \in \mathbb{R}, \forall t \geq 0, u_{k}(t, x)=e^{-\theta} \frac{\theta^{k}}{k!} \widehat{U}(x-c t)
$$

is a travelling wave solution to our system.

A first look at recovery of fitness

The 'population' travelling wave above connects the stable limit

$$
u_{k}^{*}=\left(1-\mu-k_{0} s\right) e^{-\theta} \frac{\theta^{k-k_{0}}}{\left(k-k_{0}\right)!}
$$

with $k_{0}=0$ to the trivial null equilibrium.

A first look at recovery of fitness

The 'population' travelling wave above connects the stable limit

$$
u_{k}^{*}=\left(1-\mu-k_{0} s\right) e^{-\theta} \frac{\theta^{k-k_{0}}}{\left(k-k_{0}\right)!}
$$

with $k_{0}=0$ to the trivial null equilibrium.

Consider the system with initial condition
$\forall x \in \mathbb{R}, \forall k \geq 0, u_{k}(0, x)= \begin{cases}(1-\mu-s) e^{-\theta} \frac{\theta^{k-1}}{(k-1)!} & \text { if } x>x_{0} \\ (1-\mu) e^{-\theta} \frac{\theta^{k}}{k!} & \text { if } x \leq x_{0},\end{cases}$
for some $x_{0} \in \mathbb{R}$.

A first look at recovery of fitness

The 'population' travelling wave above connects the stable limit

$$
u_{k}^{*}=\left(1-\mu-k_{0} s\right) e^{-\theta} \frac{\theta^{k-k_{0}}}{\left(k-k_{0}\right)!}
$$

with $k_{0}=0$ to the trivial null equilibrium.

Consider the system with initial condition
$\forall x \in \mathbb{R}, \forall k \geq 0, u_{k}(0, x)= \begin{cases}(1-\mu-s) e^{-\theta} \frac{\theta^{k-1}}{(k-1)!} & \text { if } x>x_{0} \\ (1-\mu) e^{-\theta} \frac{\theta^{k}}{k!} & \text { if } x \leq x_{0},\end{cases}$
for some $x_{0} \in \mathbb{R}$.

Individuals without mutations are able to invade the region where 'the ratchet has clicked'. The 'wave of expansion' is always pulled. It has speed $\mathcal{O}(\sqrt{s})$.

Population waves and genetic waves

Adding noise

We expect our system of deterministic equations to be replaced by

$$
\begin{gathered}
U=\sum_{k \geq 0} u_{k}, \quad u_{-1} \equiv 0 \\
\partial_{t} u_{k}=m \partial_{x x} u_{k}+r(B U+1)\left(u_{k}(1-k s-U)+\mu\left(u_{k-1}-u_{k}\right)\right) \\
+\sqrt{\frac{r}{N} u_{k}(B U+1)(1-k s+U)} \dot{W}_{k}
\end{gathered}
$$

where $\left(\dot{W}_{k}\right)_{k \geq 0}$ are independent space-time white noises.

Adding noise

We expect our system of deterministic equations to be replaced by

$$
\begin{gathered}
U=\sum_{k \geq 0} u_{k}, \quad u_{-1} \equiv 0 \\
\partial_{t} u_{k}=m \partial_{x x} u_{k}+r(B U+1)\left(u_{k}(1-k s-U)+\mu\left(u_{k-1}-u_{k}\right)\right) \\
\\
+\sqrt{\frac{r}{N} u_{k}(B U+1)(1-k s+U)} \dot{W}_{k}
\end{gathered}
$$

where $\left(\dot{W}_{k}\right)_{k \geq 0}$ are independent space-time white noises.
We have not analysed this system but instead simulated our individual based model.

Defining a click

Write

$$
n_{k}^{\max }(t)=\max \left\{i \in \mathbb{Z}: n_{i, k}(t)>0\right\}
$$

(location of rightmost individual carrying k mutations at time t).

Defining a click

Write

$$
n_{k}^{\max }(t)=\max \left\{i \in \mathbb{Z}: n_{i, k}(t)>0\right\}
$$

(location of rightmost individual carrying k mutations at time t).

$$
\begin{aligned}
& T_{1}=\inf \left\{t \geq 0: \exists s \geq t, n_{1}^{\max }(s)-n_{0}^{\max }(s)>d\right. \\
& \left.\quad \text { and } \forall r \in[t, s], n_{1}^{\max }(r)>n_{0}^{\max }(r)\right\} .
\end{aligned}
$$

T_{1} is the first moment when individuals with one mutation get ahead of individuals with no mutations and will get d demes ahead before being caught up.

Defining a click

Write

$$
n_{k}^{\max }(t)=\max \left\{i \in \mathbb{Z}: n_{i, k}(t)>0\right\}
$$

(location of rightmost individual carrying k mutations at time t).

$$
\begin{aligned}
& T_{1}=\inf \left\{t \geq 0: \exists s \geq t, n_{1}^{\max }(s)-n_{0}^{\max }(s)>d\right. \\
& \left.\quad \text { and } \forall r \in[t, s], n_{1}^{\max }(r)>n_{0}^{\max }(r)\right\} .
\end{aligned}
$$

T_{1} is the first moment when individuals with one mutation get ahead of individuals with no mutations and will get d demes ahead before being caught up.

We set $d=30$. Once $n_{1}^{\max }-n_{0}^{\max }>d$ it is unlikely that the inner wave catches up before entire habitat colonised.

Click rate and the Allee effect

$$
\begin{aligned}
& \partial_{t} u_{k}=m \partial_{x x} u_{k}+r(B U+1)\left(u_{k}(1-k s-U)+\mu\left(u_{k-1}-u_{k}\right)\right) \\
&+\sqrt{\frac{r}{N} u_{k}(B U+1)(1-k s+U) \dot{W}_{k}},
\end{aligned}
$$

Changing B has antagonistic effects on click rate:

- increases the strength of the Allee effect (slows down clicks);
- increases the strength of drift (speeds up clicks).

Which prevails depends on N

Click rate and the Allee effect

- Fix B, click rate decreases as N increases;

Click rate and the Allee effect

- Fix B, click rate decreases as N increases;
- Small N, genetic drift prevails, gene flow less efficient at restoring diversity in the front;

Click rate and the Allee effect

- Fix B, click rate decreases as N increases;
- Small N, genetic drift prevails, gene flow less efficient at restoring diversity in the front;
- Large N, gene flow prevails;

Click rate and the Allee effect

- Fix B, click rate decreases as N increases;
- Small N, genetic drift prevails, gene flow less efficient at restoring diversity in the front;
- Large N, gene flow prevails;
- N has more impact on T_{1} for pushed waves, almost no clicks for large N.

How do mutations accumulate?

Two dimensions

At times $t=1,2, \ldots, 150$, record least number of mutations in each newly colonised deme.

Two dimensions

At times $t=1,2, \ldots, 150$, record least number of mutations in each newly colonised deme.
$n_{i, j ; k}(t):=$ number of individuals in deme (i, j) with k mutations.
$N_{i, j}:=$ total number of individuals in deme (i, j).

Two dimensions

At times $t=1,2, \ldots, 150$, record least number of mutations in each newly colonised deme.
$n_{i, j ; k}(t):=$ number of individuals in deme (i, j) with k mutations.
$N_{i, j}:=$ total number of individuals in deme (i, j).

$$
\begin{gathered}
t_{i, j}^{\mathrm{col}}=\inf \left\{t \in\{1,2, \ldots, 150\}: N_{i, j}(t)>0 \text { and } N_{i, j}(t-1)=0\right\} \\
k_{i, j}^{\mathrm{col}}=\inf \left\{k \geq 0: n_{i, j ; k}\left(t_{i, j}^{\mathrm{col}}\right)>0\right\} .
\end{gathered}
$$

Two dimensions

Genealogies of pulled and pushed waves?

Stochastic Fisher-KPP equation

$$
\partial_{t} u=\partial_{x x} u+u(1-u)+\sqrt{\frac{1}{\rho_{e}} u(1-u)} \dot{W}
$$

Stochastic analogue of example of Roques et al. (2012)

$$
\partial_{t} u=\partial_{x x} u+u(1-u)(u-\rho)+\sqrt{\frac{1}{\rho_{e}} u(1-u)} \dot{W}
$$

$\rho \in(0,1 / 2)$

Genealogies of pulled and pushed waves?

Stochastic Fisher-KPP equation

$$
\partial_{t} u=\partial_{x x} u+u(1-u)+\sqrt{\frac{1}{\rho_{e}} u(1-u)} \dot{W}
$$

Genealogy of sample from close to the wavefront dominated by rare events in which individual far in the front produces large family; on suitable timescales Bolthausen-Sznitman coalescent

Stochastic analogue of example of Roques et al. (2012)

$$
\partial_{t} u=\partial_{x x} u+u(1-u)(u-\rho)+\sqrt{\frac{1}{\rho_{e}} u(1-u)} \dot{W}
$$

$\rho \in(0,1 / 2)$

Genealogies of pulled and pushed waves?

Stochastic Fisher-KPP equation

$$
\partial_{t} u=\partial_{x x} u+u(1-u)+\sqrt{\frac{1}{\rho_{e}} u(1-u)} \dot{W}
$$

Genealogy of sample from close to the wavefront dominated by rare events in which individual far in the front produces large family; on suitable timescales Bolthausen-Sznitman coalescent

Stochastic analogue of example of Roques et al. (2012)

$$
\partial_{t} u=\partial_{x x} u+u(1-u)(u-\rho)+\sqrt{\frac{1}{\rho_{e}} u(1-u)} \dot{W}
$$

$\rho \in(0,1 / 2)$
For a discrete space, individual based analogue (a spatial Moran model), the genealogy of sample from close to the wavefront on suitable timescales given by Kingman coalescent (Penington 2000).

