Some mathematical models of evolution

I: Spatial population models

Alison Etheridge University of Oxford Thanks

Nick Barton

Jerome Kelleher

Amandine Véber

- Each individual produces (effectively infinite) number of gametes (think of them as 'potential offspring');
- Sample N offspring uniformly at random from pool of gametes.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

- Each individual produces (effectively infinite) number of gametes (think of them as 'potential offspring');
- Sample N offspring uniformly at random from pool of gametes.

Equivalently, new generation formed by multinomial sampling with equal weights on each parent.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- Each individual produces (effectively infinite) number of gametes (think of them as 'potential offspring');
- Sample N offspring uniformly at random from pool of gametes.

Equivalently, new generation formed by multinomial sampling with equal weights on each parent.

 \ldots or, each offspring chooses its parent uniformly at random from the previous generation

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

The simplest imaginable model of inheritance

 $\mathbb{P}[2 \text{ lineages coalesce in previous generation}] \approx \frac{1}{N}$

Sample size $k \ll N^{1/3}$, pair of lineages coalesces rate $\approx \frac{1}{N} {k \choose 2}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Melfi & Viswanath (2018)

 Each individual chooses parent uniformly at random from the previous generation;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Offspring inherit the type of their parent.

 Each individual chooses parent uniformly at random from the previous generation;

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Offspring inherit the type of their parent.

'Alleles' a, A. Proportion p of a alleles among parents. Number of a-offspring Bin(N, p). $\mathbb{E}[\Delta p] = 0$ (neutral); $\mathbb{E}[(\Delta p)^2] = \frac{1}{N}p(1-p)$.

- Each individual chooses parent uniformly at random from the previous generation;
- Offspring inherit the type of their parent.

'Alleles' a, A. Proportion p of a alleles among parents. Number of a-offspring Bin(N, p). $\mathbb{E}[\Delta p] = 0$ (neutral); $\mathbb{E}[(\Delta p)^2] = \frac{1}{N}p(1-p)$.

 \rightsquigarrow changes in p over timescales $\mathcal{O}(N)$ generations.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Time in units of N generations, $\delta t = \frac{1}{N}$, $N \to \infty$

Time in units of N generations, $\delta t = \frac{1}{N}$, $N \to \infty$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Forwards in time, $\Delta p = p_{t+\delta t} - p_t$,

- $\blacktriangleright \mathbb{E}[\Delta p] = 0 \text{ (neutrality)}$
- $\blacktriangleright \mathbb{E}[(\Delta p)^2] = \delta t p (1-p)$
- $\blacktriangleright \ \mathbb{E}[(\Delta p)^4] = O(\delta t)^2$

$$dp_t = \sqrt{p_t(1-p_t)}dW_t$$

Time in units of N generations, $\delta t = \frac{1}{N}$, $N \to \infty$ Forwards in time, $\Delta p = p_{t+\delta t} - p_t$, $\blacktriangleright \mathbb{E}[\Delta p] = 0$ (neutrality) $\blacktriangleright \mathbb{E}[(\Delta p)^2] = \delta t p (1-p)$ $\blacktriangleright \mathbb{E}[(\Delta p)^4] = O(\delta t)^2$ $\downarrow Wright-Fishel time for a start time for a s$

$$dp_t = \sqrt{p_t(1-p_t)}dW_t$$

Coalescence rate $\binom{k}{2}$.

Time in units of N generations, $\delta t = \frac{1}{N}$, $N \to \infty$ Forwards in time, $\Delta p = p_{t+\delta t} - p_t$, Backwards in time $\blacktriangleright \mathbb{E}[\Delta p] = 0$ (neutrality) MRCA -----Coalesent time $\blacktriangleright \mathbb{E}[(\Delta p)^2] = \delta t p (1-p)$ Wright-Fi time $\blacktriangleright \mathbb{E}[(\Delta p)^4] = O(\delta t)^2$ $dp_t = \sqrt{p_t(1-p_t)}dW_t$ Coalescence rate $\binom{k}{2}$. $dp_{\tau} = \sqrt{\frac{1}{N}} p_{\tau} (1-p_{\tau}) dW_{\tau}$, Coalescence rate $\frac{1}{N} {k \choose 2}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Spatial structure

Kimura's stepping stone model

$$dp_i = \sum_j m_{ji}(p_j - p_i)dt + \sqrt{\frac{1}{N_e}p_i(1 - p_i)}dW_i$$

System of interacting W-F diffusions

$$\sum_{j} m_{ij} = \sum_{j} m_{ji}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

 \bigcirc

Spatial structure

Kimura's stepping stone model

$$dp_i = \sum_j m_{ji}(p_j - p_i)dt + \sqrt{\frac{1}{N_e}p_i(1 - p_i)}dW_i \bigcirc \cdots \land \bigcirc \bigcirc \cdots \land \bigcirc \bigcirc \cdots \land \bigcirc$$

System of interacting W-F diffusions

The coalescent dual process \underline{n} evolves as follows:

$$\left\{ \begin{array}{l} n_i \mapsto n_i - 1\\ n_j \mapsto n_j + 1 \end{array} \text{ at rate } n_i m_{ji} \\ n_i \mapsto n_i - 1 \text{ at rate } \frac{1}{2N_e} n_i \left(n_i - 1 \right) \end{array} \right.$$

$$\sum_{j} m_{ij} = \sum_{j} m_{ji}$$

Evolution in a spatial continuum?

For many biological populations it is more natural to consider a spatial continuum.

Evolution in a spatial continuum?

For many biological populations it is more natural to consider a spatial continuum.

Podisma pedestris

Malécot and Wright (almost) solved this problem in the 1940s:

- Initial population distributed as Poisson Point Process with constant intensity;
- ▶ Discrete generations: Each individual leaves a mean one Poisson number of offspring; (Binom(N, 1/N) ≈ Poiss(1))
- Offspring distributed around location of parent according to Gaussian.

\rightsquigarrow Branching random walk

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Felsenstein (1975).

ヘロア ヘロア ヘビア ヘビア

æ

t = 0 N = 1000

Felsenstein (1975).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Felsenstein (1975).

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○

Felsenstein (1975).

<ロ> (日) (日) (日) (日) (日)

э

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Local regulation \implies correlated reproduction.

Local regulation \implies correlated reproduction.

What about modifying the stepping stone model?

$$dp_t(x) = \frac{1}{2}\Delta p_t(x) + \sqrt{\frac{1}{2N_e}p_t(x)(1-p_t(x))}dW(t,x)$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Local regulation \implies correlated reproduction.

What about modifying the stepping stone model?

$$dp_t(x) = \frac{1}{2}\Delta p_t(x) + \sqrt{\frac{1}{2N_e}p_t(x)(1-p_t(x))}dW(t,x)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

In 2D the diffusion limit fails over small scales

Local regulation \implies correlated reproduction.

What about modifying the stepping stone model?

$$dp_t(x) = \frac{1}{2}\Delta p_t(x) + \sqrt{\frac{1}{2N_e}p_t(x)(1-p_t(x))}dW(t,x)$$

In 2D the diffusion limit fails over small scales ... and so does the obvious backwards model.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Malécot-Wright versus Kimura?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

One more observation

In a spatial continuum, a single individual can be parent to a significant proportion of the local population.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のへの

Start with Poisson intensity λdx . Events rate $dt \otimes dx \otimes \xi(dr, du)$. Throw down ball B(x, r).

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Start with Poisson intensity λdx . Events rate $dt \otimes dx \otimes \xi(dr, du)$. Throw down ball B(x, r).
- If region empty, do nothing, otherwise:
- Choose parent from B(x, r),

- Start with Poisson intensity λdx . Events rate $dt \otimes dx \otimes \xi(dr, du)$. Throw down ball B(x, r).
- If region empty, do nothing, otherwise:
- Choose parent from B(x,r),
- Each individual in region dies with probability u,

- Start with Poisson intensity λdx . Events rate $dt \otimes dx \otimes \xi(dr, du)$. Throw down ball B(x, r).
- If region empty, do nothing, otherwise:
- Choose parent from B(x, r),
- Each individual in region dies with probability u,
- New individuals born according to Poisson intensity λu1_{B_r(x)}.

- Start with Poisson intensity λdx . Events rate $dt \otimes dx \otimes \xi(dr, du)$. Throw down ball B(x, r).
- If region empty, do nothing, otherwise:
- Choose parent from B(x, r),
- Each individual in region dies with probability u,
- New individuals born according to Poisson intensity λu1_{B_r(x)}.

Offspring inherit type of parent

Start from $Poiss(\lambda)$

If first reproduction event has 'impact' \boldsymbol{u}

- ▶ Poiss $((1-u)\lambda)$ 'survivors';
- ▶ Poiss(uλ) offspring.

As $\lambda \to \infty$ proportion u of individuals die and are replaced by offspring of the type of the parent.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

State $\{\rho(t, \cdot) \in \mathcal{M}_1(K), t \ge 0\}$. K space of genetic types.

- Poisson Point Process Π intensity $dt \otimes F(du)$
- \blacktriangleright if $(t,u)\in\Pi,$ individual sampled at random from population at time t-
- proportion u of population replaced by offspring of chosen individual

 $\rho(t,\cdot) = (1-u)\rho(t-,\cdot) + u\delta_k.$

 $F(du) = \frac{\Lambda(du)}{u^2}$, Λ finite measure on [0, 1].

Donnelly & Kurtz (1999)

('Generalised Fleming-Viot process', Bertoin & Le Gall 2003)

The $\Lambda\text{-}\mathsf{Fleming}\text{-}\mathsf{Viot}$ process

・ロト・西・・田・・田・・日・

The $\Lambda\text{-}\mathsf{Fleming}\text{-}\mathsf{Viot}$ process

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Donnelly & Kurtz (1999), Pitman (1999), Sagitov (1999)

If there are currently n ancestral lineages, each transition involving j of them merging happens at rate

$$\beta_{n,j} = \int_0^1 u^j (1-u)^{n-j} \frac{\Lambda(du)}{u^2}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Λ a finite measure on [0,1]
 Kingman's coalescent, Λ = δ₀

The spatial $\Lambda\text{-}\mathsf{Fleming}\text{-}\mathsf{Viot}$ process

State $\{\rho(t, x, \cdot) \in \mathcal{M}_1(K), x \in \mathbb{R}^2, t \ge 0\}.$

The spatial Λ -Fleming-Viot process

State $\{\rho(t, x, \cdot) \in \mathcal{M}_1(K), x \in \mathbb{R}^2, t \ge 0\}$. If Poisson point process rate $dt \otimes dx \otimes \xi(dr, du)$ on $[0, \infty) \times \mathbb{R}^2 \times [0, \infty) \times [0, 1]$.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dynamics: for each $(t, x, r, u) \in \Pi$,

Dynamics: for each $(t, x, r, u) \in \Pi$,

・ロッ ・雪 ・ ・ ヨ ・ ・

Dynamics: for each $(t, x, r, u) \in \Pi$,

 $\blacktriangleright z \sim U(B_r(x))$

(日)

Dynamics: for each $(t, x, r, u) \in \Pi$,

 $\blacktriangleright z \sim U(B_r(x))$

$$\blacktriangleright \ k \sim \rho(t-,z,\cdot).$$

(日)

Dynamics: for each $(t, x, r, u) \in \Pi$,

► $z \sim U(B_r(x))$ ► $k \sim \rho(t-, z, \cdot).$ For all $y \in B_r(x)$,

$$\rho(t, y, \cdot) = (1 - u)\rho(t - y, \cdot) + u\delta_k.$$

 A single ancestral lineage evolves in series of jumps with intensity

$$dt \otimes \int_{(|x|/2,\infty)} \int_{[0,1]} \frac{L_r(x)}{\pi r^2} u \,\xi(dr,du) dx$$

 A single ancestral lineage evolves in series of jumps with intensity

$$dt \otimes \int_{(|x|/2,\infty)} \int_{[0,1]} \frac{L_r(x)}{\pi r^2} u \,\xi(dr,du) dx$$

on $\mathbb{R}_+ \times \mathbb{R}^2$ where $L_r(x) = |B_r(0) \cap B_r(x)|$.

 Lineages can coalesce when hit by same 'event'.

Adding selection

```
Warm up: the Wright-Fisher model Two types a, A
```

Population of fixed size N evolves in discrete generations.

- Each individual produces (effectively infinite) number of gametes;
- A type a produces (1 s) times as many gametes as a type A;
- Sample N offspring uniformly at random from pool of gametes.

If proportion of a-alleles in parental population is p, then the probability that an offspring is type a is

$$\frac{(1-s)p}{(1-s)p+(1-p)} = \frac{(1-s)p}{1-sp}.$$

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Introducing selection to the SLFV

proportion of *a*-alleles is \overline{w} , then probability offspring are type *a* is

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

$$\frac{(1-s)\overline{w}}{1-s\overline{w}}$$

Introducing selection to the SLFV

$$\frac{(1-s)\overline{w}}{1-s\overline{w}} = \overline{w}(1-s) + s\overline{w}^2 + \mathcal{O}(s^2).$$

Introducing selection to the SLFV

$$K = \{a, A\}, w(t, x) = \rho(t, x, a)$$
 proportion of type a

(i) Two types, a, A. Weight type a by (1 − s). If a reproduction event affects a region B(x, r) in which current proportion of a-alleles is w, then probability offspring are type a is

$$\frac{(1-s)\overline{w}}{1-s\overline{w}} = \overline{w}(1-s) + s\overline{w}^2 + \mathcal{O}(s^2).$$

(ii) Neutral events rate ∝ (1 − s), selective events rate ∝ s.
 At selective reproduction events, sample two potential parents.
 If types aa, then an a reproduces, otherwise an A does.

(Spatial) Ancestral selection graph

Evolution of ancestry due to neutral events as before:

- lineages evolve in a series of jumps;
- they can coalesce when covered by same event.

◆□▶ ◆□▶ ◆□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

(Spatial) Ancestral selection graph

Evolution of ancestry due to neutral events as before:

- lineages evolve in a series of jumps;
- they can coalesce when covered by same event.

At selective events

- Two 'potential' parents must be traced;
- Lineages can coalesce when hit by same 'event'.

(日)

(Spatial) Ancestral selection graph

Evolution of ancestry due to neutral events as before:

- lineages evolve in a series of jumps;
- they can coalesce when covered by same event.

At selective events

- Two 'potential' parents must be traced;
- Lineages can coalesce when hit by same 'event'.

・ロット (雪) (日) (日) (日)

A sampled individual is type a iff all lineages in the corresponding ASG are type a at any previous time.

Neutral mutation rate, μ , sets timescale

Mutation rates are low;

Scaling limits are 'robust'.

Natural question:

When, and over what spatial scales can we expect to observe a signature of natural selection?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● ● ● ● ● ●

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Fix $u \in (0,1)$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Fix $u \in (0,1)$.

Set $n = 1/\mu$ and rescale: $w(nt, \sqrt{nx})$.

Fix $u \in (0,1)$.

```
Set n = 1/\mu and rescale: w(nt, \sqrt{nx}).
```

Heuristics:

- At a 'branching' event in ASG, two lineages born at separation $\mathcal{O}(1/\sqrt{n}).$
- \blacktriangleright Probability they separate to $\mathcal{O}(1)$ before coalescing is

$$d = 1: \ \mathcal{O}(1/\sqrt{n}),$$

- $\blacktriangleright \ d = 2: \ \mathcal{O}(1/\log n),$
- $\blacktriangleright \quad d \geq 3: \ \mathcal{O}(1).$
- Selection will only be visible if expect to see at least one pair 'separate' by time 1.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Fix $u \in (0,1)$.

```
Set n = 1/\mu and rescale: w(nt, \sqrt{nx}).
```

Ability to detect selection depends on dimension:

► d = 1, selection only visible if $s = O(1/\sqrt{n}) = O(\sqrt{\mu})$, *limiting ASG embedded in Brownian net*;

•
$$d = 2$$
, selection only visible if
 $s = O(\log n/n) = O(\mu | \log(\mu) |)$,
limiting ASG 'Branching BM';

► $d \ge 3$, selection only visible if $s = O(1/n) = O(\mu)$, *limiting ASG Branching BM*.

Technical challenges because $ns_n \to \infty$. Straulino (2015), E., Freeman, Straulino (2015)

Spread of a favoured allele

Two types, a, A. If a reproduction event affects a region B(x,r) in which current proportion of a-alleles is w, then probability offspring are type a is $\frac{w}{1+s(1-w)}$.

Spread of a favoured allele

Two types, a, A. If a reproduction event affects a region B(x,r) in which current proportion of a-alleles is w, then probability offspring are type a is $\frac{w}{1+s(1-w)}$.

Alternative interpretation: strong selection \sim range expansion

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Range expansion

Pseudomanas aeruginosa (Kevin Foster)

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ● の < @

Range expansion

Pseudomanas aeruginosa (Kevin Foster)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

What's really happening?

 ▲ ≣ ► ≣ • • ৭ ৫ •