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Population of fixed size N evolves in discrete generations.

◮ Each individual produces (effectively infinite) number of
gametes (think of them as ‘potential offspring’);

◮ Sample N offspring uniformly at random from pool of
gametes.

Equivalently, new generation formed by multinomial sampling with
equal weights on each parent.

. . . or, each offspring chooses its parent uniformly at random from
the previous generation



The simplest imaginable model of inheritance
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Kingman 1982

P[2 lineages coalesce in previous generation] ≈ 1
N

Sample size k ≪ N1/3, pair of lineages coalesces rate ≈ 1
N
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Melfi & Viswanath (2018)
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Population of fixed size N evolves in discrete generations.

◮ Each individual chooses parent uniformly at random from the
previous generation;

◮ Offspring inherit the type of their parent.

‘Alleles’ a, A.
Proportion p of a alleles among parents.
Number of a-offspring Bin(N, p).
E[∆p] = 0 (neutral); E[(∆p)2] = 1

N p(1− p).

❀ changes in p over timescales O(N) generations.
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Spatial structure

Kimura’s stepping stone model
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Kimura’s stepping stone model

dpi =
∑

j

mji(pj−pi)dt+

√

1

Ne
pi(1− pi)dWi

System of interacting W-F diffusions

The coalescent dual process n evolves as follows:

◮

{

ni 7→ ni − 1
nj 7→ nj + 1

at rate nimji

◮ ni 7→ ni − 1 at rate 1
2Ne

ni (ni − 1)
∑

j mij =
∑

j mji
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For many biological populations it is more natural to consider a
spatial continuum.
Podisma pedestris



A model for a spatial continuum?

Malécot and Wright (almost) solved this problem in the 1940s:

◮ Initial population distributed as Poisson Point Process with
constant intensity;

◮ Discrete generations: Each individual leaves a mean one
Poisson number of offspring; (Binom(N, 1/N) ≈ Poiss(1))

◮ Offspring distributed around location of parent according to
Gaussian.

❀ Branching random walk
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Felsenstein (1975).

t = 100 t = 1000
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Mathematical problems

Felsenstein (1975). The pain in the torus: Independent
reproduction =⇒ clumping;

Local regulation =⇒ correlated reproduction.

What about modifying the stepping stone model?

dpt(x) =
1

2
∆pt(x) +

√

1

2Ne
pt(x)(1 − pt(x))dW (t, x)

In 2D the diffusion limit fails over small scales . . . and so does the
obvious backwards model.



Malécot-Wright versus Kimura?

F = P[identity]

1 2 3 4 5 6 7
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One more observation

In a spatial continuum, a single individual can be parent to a
significant proportion of the local population.
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An individual based model

◮ Start with Poisson intensity
λdx. Events rate
dt⊗ dx⊗ ξ(dr, du). Throw
down ball B(x, r).

◮ If region empty, do nothing,
otherwise:

◮ Choose parent from B(x, r),

◮ Each individual in region dies
with probability u,

◮ New individuals born according
to Poisson intensity λu1Br(x).
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Offspring inherit type of parent



λ → ∞ limit (no space)

Start from Poiss(λ)

If first reproduction event has ‘impact’ u

◮ Poiss((1− u)λ) ‘survivors’;

◮ Poiss(uλ) offspring.

As λ → ∞ proportion u of individuals die and are replaced by
offspring of the type of the parent.



The Λ-Fleming-Viot process

State {ρ(t, ·) ∈ M1(K), t ≥ 0}. K space of genetic types.

◮ Poisson Point Process Π intensity dt⊗ F (du)

◮ if (t, u) ∈ Π, individual sampled at random from population at
time t−

◮ proportion u of population replaced by offspring of chosen
individual

ρ(t, ·) = (1− u)ρ(t−, ·) + uδk.

F (du) = Λ(du)
u2 , Λ finite measure on [0, 1].

Donnelly & Kurtz (1999)

(‘Generalised Fleming-Viot process’, Bertoin & Le Gall 2003)



The Λ-Fleming-Viot process
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Λ-coalescents

Donnelly & Kurtz (1999), Pitman (1999), Sagitov (1999)

If there are currently n ancestral lineages, each transition involving
j of them merging happens at rate

βn,j =

∫ 1

0
uj(1− u)n−j Λ(du)

u2

◮ Λ a finite measure on [0, 1]

◮ Kingman’s coalescent, Λ = δ0
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The spatial Λ-Fleming-Viot process

State {ρ(t, x, ·) ∈ M1(K), x ∈ R
2, t ≥ 0}. Π Poisson point

process rate dt⊗ dx⊗ ξ(dr, du) on [0,∞)× R
2 × [0,∞) × [0, 1].

Dynamics: for each (t, x, r, u) ∈ Π,

◮ z ∼ U(Br(x))

◮ k ∼ ρ(t−, z, ·).
For all y ∈ Br(x),

ρ(t, y, ·) = (1− u)ρ(t−, y, ·) + uδk.
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Backwards in time

◮ A single ancestral lineage evolves in series of jumps with
intensity

dt⊗
∫

(|x|/2,∞)

∫

[0,1]

Lr(x)

πr2
u ξ(dr, du)dx

on R+ × R
2 where Lr(x) = |Br(0) ∩Br(x)|.
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◮ A single ancestral lineage evolves in series of jumps with
intensity

dt⊗
∫

(|x|/2,∞)

∫

[0,1]

Lr(x)

πr2
u ξ(dr, du)dx

on R+ × R
2 where Lr(x) = |Br(0) ∩Br(x)|.

◮ Lineages can coalesce when hit
by same ‘event’.

x
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Adding selection

Warm up: the Wright-Fisher model
Two types a, A

Population of fixed size N evolves in discrete generations.

◮ Each individual produces (effectively infinite) number of
gametes;

◮ A type a produces (1− s) times as many gametes as a type A;

◮ Sample N offspring uniformly at random from pool of
gametes.

If proportion of a-alleles in parental population is p, then the
probability that an offspring is type a is

(1− s)p

(1− s)p+ (1− p)
=

(1− s)p

1− sp
.



Introducing selection to the SLFV

K = {a,A}, w(t, x) = ρ(t, x, a) proportion of type a

◮ (i) Two types, a, A. Weight type a by (1− s). If a
reproduction event affects a region B(x, r) in which current
proportion of a-alleles is w, then probability offspring are type
a is

(1− s)w

1− sw



Introducing selection to the SLFV

K = {a,A}, w(t, x) = ρ(t, x, a) proportion of type a

◮ (i) Two types, a, A. Weight type a by (1− s). If a
reproduction event affects a region B(x, r) in which current
proportion of a-alleles is w, then probability offspring are type
a is

(1− s)w

1− sw
= w(1− s) + sw2 +O(s2).



Introducing selection to the SLFV

K = {a,A}, w(t, x) = ρ(t, x, a) proportion of type a

◮ (i) Two types, a, A. Weight type a by (1− s). If a
reproduction event affects a region B(x, r) in which current
proportion of a-alleles is w, then probability offspring are type
a is

(1− s)w

1− sw
= w(1− s) + sw2 +O(s2).

◮ (ii) Neutral events rate ∝ (1− s), selective events rate ∝ s.
At selective reproduction events, sample two potential parents.
If types aa, then an a reproduces, otherwise an A does.
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(Spatial) Ancestral selection graph

Evolution of ancestry due to neutral events as before:

◮ lineages evolve in a series of jumps;

◮ they can coalesce when covered by same event.

At selective events

◮ Two ‘potential’ parents must be

traced;

◮ Lineages can coalesce when hit
by same ‘event’.

x
r

A sampled individual is type a iff all lineages in the corresponding
ASG are type a at any previous time.



When can we detect selection?

Neutral mutation rate, µ, sets timescale

◮ Mutation rates are low;

◮ Scaling limits are ‘robust’.

Natural question:

When, and over what spatial scales can we expect to observe a
signature of natural selection?
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Scaling limits: Small ‘neighbourhood size’:

Fix u ∈ (0, 1).

Set n = 1/µ and rescale: w(nt,
√
nx).

Heuristics:

◮ At a ‘branching’ event in ASG, two lineages born at separation
O(1/

√
n).

◮ Probability they separate to O(1) before coalescing is
◮ d = 1: O(1/

√
n),

◮ d = 2: O(1/ logn),
◮ d ≥ 3: O(1).

◮ Selection will only be visible if expect to see at least one pair
‘separate’ by time 1.



Scaling limits: Small ‘neighbourhood size’:

Fix u ∈ (0, 1).

Set n = 1/µ and rescale: w(nt,
√
nx).

Ability to detect selection depends on dimension:

◮ d = 1, selection only visible if s = O(1/
√
n) = O(

√
µ),

limiting ASG embedded in Brownian net;

◮ d = 2, selection only visible if
s = O(log n/n) = O(µ| log(µ)|),
limiting ASG ‘Branching BM’;

◮ d ≥ 3, selection only visible if s = O(1/n) = O(µ),
limiting ASG Branching BM.

Technical challenges because nsn → ∞.
Straulino (2015), E., Freeman, Straulino (2015)
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Spread of a favoured allele

Two types, a, A. If a reproduction event affects a region B(x, r)
in which current proportion of a-alleles is w, then probability
offspring are type a is w

1+s(1−w) .

Alternative interpretation: strong selection ∼ range expansion
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What’s really happening?


