SOME MATHEMATICAL
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The (neutral) Wright-Fisher model

Population of fixed size N evolves in discrete generations.

» Each individual produces (effectively infinite) number of
gametes (think of them as ‘potential offspring’);

» Sample N offspring uniformly at random from pool of
gametes.

Equivalently, new generation formed by multinomial sampling with
equal weights on each parent.

... or, each offspring chooses its parent uniformly at random from
the previous generation



The simplest imaginable model of inheritance

The past

P[2 lineages coalesce in previous generation] ~ %

- 1/3 o - 1 (k
Sample size k < N''/3, pair of lineages coalesces rate ~ + (5)

Melfi & Viswanath (2018)
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The (neutral) Wright-Fisher model

Population of fixed size N evolves in discrete generations.

» Each individual chooses parent uniformly at random from the
previous generation;

» Offspring inherit the type of their parent.

‘Alleles’ a, A.

Proportion p of a alleles among parents.
Number of a-offspring Bin(N, p).

E[Ap] = 0 (neutral); E[(Ap)?] = xp(1 - p).

~> changes in p over timescales O(N) generations.
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Drift (large population limit)

Time in units of NV generations, Jt = N N — o0

Forwards in time, Ap = pryst — py,
Backwards in time

» E[Ap] = 0 (neutrality) MRCA
21 _
> E[(Ap) ] N 5tp(1 N p) Coalesent time Wright-Fisher
> E[(Ap)!] = O(6t)?
—

dpy = /pe(1 — pr)dW;

Coalescence rate (’;) .

1 1 [k
dp, = EpT(l — py)dW,, Coalescence rate A <2>



Spatial structure

Kimura's stepping stone model
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Spatial structure

Kimura's stepping stone model

: ,
dpi =) mji(pj—pi)di+ ~ Pil = pi)dWi |
I e |

System of interacting W-F diffusions

The coalescent dual process n evolves as follows:

n;+—n; — 1
> at rate n;my;
nj—mn; +1

» n;+—n; — 1 at rate ﬁnl (n, — 1)

D Mij = D My



Evolution in a spatial continuum?

For many biological populations it is more natural to consider a
spatial continuum.
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For many biological populations it is more natural to consider a
spatial continuum.
Podisma pedestris




A model for a spatial continuum?

Malécot and Wright (almost) solved this problem in the 1940s:

P Initial population distributed as Poisson Point Process with
constant intensity;

» Discrete generations: Each individual leaves a mean one
Poisson number of offspring; (Binom(V,1/N) ~ Poiss(1))

» Offspring distributed around location of parent according to
Gaussian.

~» Branching random walk



Felsenstein (1975).
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Felsenstein (1975).
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Felsenstein (1975). The pain in the torus: Independent
reproduction = clumping;

«40O>» «Fr « =)

«E=

DA



Mathematical problems

Felsenstein (1975). The pain in the torus: Independent
reproduction = clumping;

Local regulation = correlated reproduction.



Mathematical problems

Felsenstein (1975). The pain in the torus: Independent
reproduction = clumping;

Local regulation = correlated reproduction.

What about modifying the stepping stone model?

) = 39 + [ 5 p) (L~ )W (1, 2)

9N, bt



Mathematical problems

Felsenstein (1975). The pain in the torus: Independent
reproduction = clumping;

Local regulation = correlated reproduction.

What about modifying the stepping stone model?

) = 39 + [ 5 p) (L~ )W (1, 2)

9N, bt

In 2D the diffusion limit fails over small scales



Mathematical problems

Felsenstein (1975). The pain in the torus: Independent
reproduction = clumping;

Local regulation = correlated reproduction.

What about modifying the stepping stone model?

) = 39 + [ 5 p) (L~ )W (1, 2)

In 2D the diffusion limit fails over small scales ... and so does the
obvious backwards model.



Malécot-Wright versus Kimura?
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F = P[identity]




One more observation

In a spatial continuum, a single individual can be parent to a
significant proportion of the local population.
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An individual based model

» Start with Poisson intensity
Adx. Events rate
dt ® de @ &(dr,du). Throw
down ball B(z, 7).

> If region empty, do nothing,
otherwise:

» Choose parent from B(zx,r),

» Each individual in region dies
with probability wu,

» New individuals born according
to Poisson intensity Aulp ().

Offspring inherit type of parent



A — oo limit (no space)

Start from Poiss(\)

If first reproduction event has ‘impact’ u
» Poiss((1 —u)A) ‘survivors’;

» Poiss(ul) offspring.

As \ — oo proportion u of individuals die and are replaced by
offspring of the type of the parent.



The A-Fleming-Viot process

State {p(t, ) € My (K),t > 0}. K space of genetic types.

» Poisson Point Process II intensity dt @ F(du)

» if (t,u) € II, individual sampled at random from population at
time t—

» proportion u of population replaced by offspring of chosen
individual

pt,)) = (1 —u)p(t—,-) + udg.

F(du) = Agé"), A finite measure on [0, 1].

Donnelly & Kurtz (1999)

(‘Generalised Fleming-Viot process’, Bertoin & Le Gall 2003)



.
The A-Fleming-Viot process

time

DA



.
The A-Fleming-Viot process

time

DA



A-coalescents

Donnelly & Kurtz (1999), Pitman (1999), Sagitov (1999)

If there are currently n ancestral lineages, each transition involving
7 of them merging happens at rate

A(du)

u2

1
Bn,j :/0 uj(l —u)n_j

» A a finite measure on [0, 1]

» Kingman's coalescent, A = dg



State {p(t,z,-) € My(K),r € R%,t > 0}.
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The spatial A-Fleming-Viot process

State {p(t,z,-) € M1(K),z € R?,t > 0}. II Poisson point
process rate dt @ dx ® &(dr,du) on [0,00) x R? x [0,00) x [0, 1].
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The spatial A-Fleming-Viot process

State {p(t,z,-) € M1(K),z € R?,t > 0}. II Poisson point
process rate dt @ dx ® &(dr,du) on [0,00) x R? x [0,00) x [0, 1].

Dynamics: for each (¢, 2,7, u) €1,
> 2~ U(B,(x))
> ke~ op(t—,z,-).

For all y € B, (x),

p(t* Y, ) = (1 - U)[)(t—, Y, ) + U5k:-



Backwards in time

» A single ancestral lineage evolves in series of jumps with
intensity

dt®/ / Lr(f) u(dr,du)ds
(lz[/2,00) J[0,1] 7T

on R, x R? where L,(z) = |B,(0) N B.(z)|.




Backwards in time

» A single ancestral lineage evolves in series of jumps with
intensity

dt®/ / Lr(f) u(dr,du)ds
(lz[/2,00) J[0,1] 7T

on R, x R? where L,(z) = |B,(0) N B.(z)|.

P> Lineages can coalesce when hit
by same ‘event’.



Adding selection

Warm up: the Wright-Fisher model
Two types a, A

Population of fixed size N evolves in discrete generations.
» Each individual produces (effectively infinite) number of
gametes;
> A type a produces (1 — s) times as many gametes as a type A;
» Sample N offspring uniformly at random from pool of
gametes.

If proportion of a-alleles in parental population is p, then the
probability that an offspring is type a is

(1—s)p (1-s)p

(I-sp+(1—p 1—sp’




Introducing selection to the SLFV

K ={a, A}, w(t,z) = p(t,x,a) proportion of type a
» (i) Two types, a, A. Weight type a by (1 —s). If a
reproduction event affects a region B(z,r) in which current
proportion of a-alleles is w, then probability offspring are type
ais
(1—-s)w
1—sw
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Introducing selection to the SLFV

K ={a, A}, w(t,z) = p(t,x,a) proportion of type a
» (i) Two types, a, A. Weight type a by (1 —s). If a
reproduction event affects a region B(z,r) in which current
proportion of a-alleles is w, then probability offspring are type
ais ) -
ﬂ =w(1 — s) + sw* + O(s?).
1—sw
» (ii) Neutral events rate ox (1 — s), selective events rate o s.
At selective reproduction events, sample two potential parents.
If types aa, then an a reproduces, otherwise an A does.
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Evolution of ancestry due to neutral events as before:
P lineages evolve in a series of jumps;

» they can coalesce when covered by same event.



(Spatial) Ancestral selection graph

Evolution of ancestry due to neutral events as before:
P lineages evolve in a series of jumps;

» they can coalesce when covered by same event.

At selective events

» Two ‘potential’ parents must be
traced;

P Lineages can coalesce when hit
by same ‘event’.




(Spatial) Ancestral selection graph

Evolution of ancestry due to neutral events as before:
P lineages evolve in a series of jumps;

» they can coalesce when covered by same event.

At selective events

> Two ‘potential’ parents must be
traced;

P Lineages can coalesce when hit
by same ‘event’.

A sampled individual is type a iff all lineages in the corresponding
ASG are type a at any previous time.



When can we detect selection?

Neutral mutation rate, y, sets timescale

» Mutation rates are low;

» Scaling limits are ‘robust’.

Natural question:

When, and over what spatial scales can we expect to observe a
signature of natural selection?



Fix u € (0,1).
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Fix u € (0,1).

Set n = 1/p and rescale: w(nt,/nx).
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Scaling limits: Small ‘neighbourhood size':
Fix u € (0,1).
Set n = 1/p and rescale: w(nt, /nx).

Heuristics:

» At a ‘branching’ event in ASG, two lineages born at separation
O(1//n).
» Probability they separate to O(1) before coalescing is
> d=1: O(1/y/n),
> d=2: O(1/logn),
> d>3: O1).
» Selection will only be visible if expect to see at least one pair
‘separate’ by time 1.



Scaling limits: Small ‘neighbourhood size':
Fix u € (0,1).
Set n = 1/p and rescale: w(nt, /nx).

Ability to detect selection depends on dimension:
» d =1, selection only visible if s = O(1/y/n) = O(/1),
limiting ASG embedded in Brownian net;
> d = 2, selection only visible if

s = O(logn/n) = O(u|log(p)]),
limiting ASG ‘Branching BM’,

» d > 3, selection only visible if s = O(1/n) = O(u),
limiting ASG Branching BM.

Technical challenges because ns,, — oc.
Straulino (2015), E., Freeman, Straulino (2015)



Spread of a favoured allele

Two types, a, A. If a reproduction event affects a region B(z,r)
in which current proportion of a-alleles is w, then probability

offspring are type a is m




Spread of a favoured allele

Two types, a, A. If a reproduction event affects a region B(z,r)
in which current proportion of a-alleles is w, then probability

offspring are type a is m

Alternative interpretation: strong selection ~ range expansion



Range expansion

Pseudomanas aeruginosa (Kevin Foster)
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What's really happening?




